Synthesis 2020; 52(23): 3667-3674
DOI: 10.1055/s-0040-1706421
paper
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of a Bicyclo[4.3.0]nonene Derivative Bearing a Quaternary Carbon Stereocenter: Desymmetrization of σ-Symmetrical Diketones through Intramolecular Addition of an Alkenyl Anion

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Email: yosimura@p.kanazawa-u.ac.jp
,
Yuki Enami
,
› Author Affiliations
This research was supported by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research (KAKENHI) (Grant No. JP17K08208).
Further Information

Publication History

Received: 26 June 2020

Accepted after revision: 25 July 2020

Publication Date:
20 August 2020 (online)


Abstract

The enantioselective synthesis of a bicyclo[4.3.0]nonene derivative bearing a quaternary carbon stereocenter is achieved by employing a desymmetrization strategy involving an intramolecular addition. The intramolecular nucleophilic addition of a highly reactive carbanion generated from an alkenyl iodide in the presence of a chiral ligand occurs with discrimination of two keto carbonyl groups to give the corresponding bicyclic compound in 81% yield and 39% ee. Asymmetric synthesis via an intramolecular desymmetrization strategy using a chiral ligand–carbanion complex represents a complementary approach to using chiral organocatalysts or chiral ligand–transition-metal complexes.

Supporting Information

 
  • References

    • 1a Li C, Ragab S, Liu G, Tang W. Nat. Prod. Rep. 2020; 37: 276
    • 1b Xu P.-W, Yu J.-S, Chen C, Cao Z.-Y, Zhou F, Zhou J. ACS Catal. 2019; 8: 1820
    • 1c Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
    • 1d Overman LE, Quasdorf KW. Nature 2014; 516: 181
    • 2a Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
    • 2b Petersen KS. Tetrahedron Lett. 2015; 56: 6523
    • 2c Studer A, Schleth F. Synlett 2005; 3033
  • 3 Buchschacher P, Fürst A, Gutzwiller J. Org. Synth. 1985; 63: 37
  • 4 Hajos ZG, Parrish DR. Org. Synth. 1985; 63: 26
  • 5 Nakazaki K, Hayashi K, Hosoe S, Tashiro T, Kuse M, Takikawa H. Tetrahedron 2012; 68: 9029
  • 6 Tang Y, Liu J, Chen P, Ly M, Wang Z, Huang Y. J. Org. Chem. 2014; 79: 11729
    • 7a Wei Q, Cai J, Hu X.-D, Zhao J, Cong H, Zheng C, Liu W.-B. ACS Catal. 2020; 10: 216
    • 7b Selmani A, Darses S. Org. Lett. 2020; 22: 2681
    • 7c Yuan Z, Feng Z, Zeng Y, Zhao X, Lin A, Yao H. Angew. Chem. Int. Ed. 2019; 58: 2884
    • 7d Zanghi JM, Liu S, Meek SJ. Org. Lett. 2019; 21: 5172
    • 7e Zhu T, Lui Y, Smetankova M, Zhuo S, Mou C, Chai H, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2019; 58: 15778
    • 7f You C, Li X, Gong Q, Wen J, Zhang X. J. Am. Chem. Soc. 2019; 141: 14560
    • 7g Knowe MT, Danneman MW, Sun S, Pink M, Johnston JN. J. Am. Chem. Soc. 2018; 140: 1998
    • 7h Cai J, Wei Q, Hu X.-D, Zhang Y, Li W, Cong H, Liu W, Liu W.-B. Synthesis 2018; 50: 1661
    • 7i Wu X, Chen Z, Bai Y.-B, Dong VM. J. Am. Chem. Soc. 2016; 138: 12013
    • 7j Li Y, Yang S, Wen G, Lin Q, Zhang G, Qiu L, Zhang X, Du G, Fang X. J. Org. Chem. 2016; 81: 2763
    • 7k Ema T, Akihara K, Obayashi R, Sakai T. Adv. Synth. Catal. 2012; 354: 3283
    • 7l Deschamp J, Riant O. Org. Lett. 2009; 11: 1217
    • 7m Ema T, Oue Y, Akihara K, Miyazaki Y, Sakai T. Org. Lett. 2009; 11: 4866
    • 8a Zhao Y.-S, Tang X.-Q, Tao J.-C, Tian P, Lin G.-Q. Org. Biomol. Chem. 2016; 14: 4400
    • 8b Molander GA, Huérou YL, Brown GA. J. Org. Chem. 2001; 66: 4511
    • 8c Balog A, Geib J, Curran DP. J. Org. Chem. 1995; 60: 345
    • 8d Villagómez-Ibarra R, Alvarez-Cisneros C, Joseph-Nathan P. Tetrahedron 1995; 51: 9285
    • 8e Kinoshita A, Mori M. Chem. Lett. 1994; 23: 1475
    • 8f Mori M, Kaneta N, Shibasaki M. J. Organomet. Chem. 1994; 464: 35
    • 9a Mori M, Isono N, Kaneta N, Shibasaki M. J. Org. Chem. 1993; 58: 2972
    • 9b Mori M, Isono N, Kaneta N, Shibasaki M. Tetrahedron Lett. 1991; 32: 6139
  • 10 Schmidt W, Schulze TM, Brasse G, Nagrodzka E, Maczka M, Zettel J, Jones PG, Grunenberg J, Hilker M, Trauer-Kizilelma U, Braun U, Schulz S. Angew. Chem. Int. Ed. 2015; 54: 7698

    • Enantioselective syntheses through desymmetrization via intermolecular reactions of carbanion species are reported, see:
    • 11a Graff J, Debande T, Praz J, Guénée L, Alexakis A. Org. Lett. 2013; 15: 4270
    • 11b Perron Q, Alexakis A. Adv. Synth. Catal. 2010; 352: 2611
    • 11c Hodgson DM, Štefane B, Miles TJ, Witherington J. J. Org. Chem. 2006; 71: 8510
    • 11d Hodgson DM, Paruch E. Tetrahedron 2004; 60: 5185
    • 11e Shintani R, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 1057
    • 11f Hodgson DM, Cameron ID. Org. Lett. 2001; 3: 441
    • 11g Hodgson DM, Lee GP. Tetrahedron: Asymmetry 1997; 8: 2303
  • 12 Martínez-Estíbalez U, Sotomayor N, Lete E. Org. Lett. 2009; 11: 1237 ; and references cited therein
  • 13 Bedekar AV, Watanabe T, Tanaka K, Fuji K. Synthesis 1995; 1069
  • 14 Byrne SJ, Fletcher AJ, Hebeisen P, Willis MC. Org. Biomol. Chem. 2010; 8: 758
  • 15 Tomioka K, Shindo M, Koga K. J. Am. Chem. Soc. 1989; 111: 8266
    • 16a Carl E, Stalke D. In Lithium Compounds in Organic Synthesis . Luisi R, Capriati V. Wiley-VCH; Weinheim: 2014: 3
    • 16b Clayden J. Organolithiums: Selectivity for Synthesis . Elsevier Science; Oxford: 2002
    • 16c Reich HJ. Chem. Rev. 2013; 113: 7130
  • 17 Wei Z.-L, Li A.-Y, Lin G.-Q. Synthesis 2000; 1673
  • 18 Yearick K, Wolf C. Org. Lett. 2008; 10: 3915
    • 19a Alkenyl halides 7a,b were synthesized from ethyl propiolate by the following 3 steps: cis-addition of a hydrogen halide on the triple bond, reduction of the ester, and bromination of the alcohol. For cis-addition of a hydrogen halide on a triple bond, see: Ma S, Lu X, Li Z. J. Org. Chem. 1992; 57: 709
    • 19b For conversion of an ester into allylic bromide, see: Shen Z, Ni Z, Mo S, Wang J, Zhu Y. Chem. Eur. J. 2012; 18: 4859