Flow Synthesis of Triptycene via Triple Cycloaddition of Ynolate to Benzyne

Takayuki Iwata*a
Tatsuro Yoshinagab
Mitsuru Shindo*a

a Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga 816-8580, Japan
shindo@cm.kyushu-u.ac.jp
b Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga 816-8580, Japan

Published as part of the Cluster Integrated Synthesis Using Continuous-Flow Technologies

Abstract Flow synthesis of triptycene was achieved using triple cycloaddition of ynolate to benzyne. Employing the borate-type benzyne precursor, side reactions triggered by the addition of alkyl lithium to benzyne were efficiently suppressed under microflow conditions, thus producing triptycene with a higher yield than that obtained under the corresponding batch conditions. Furthermore, ynolate prepared from α,α-dibromoester under microflow conditions was continuously added to the flow reaction with benzyne, which successfully synthesized triptycene in only one minute.

Keywords triptycene, ynolate, benzyne, flow synthesis, cycloadditionborate

Triptycenes are symmetric compounds with three benzene rings fixed by a bicyclo[2.2.2]octatriene bridgehead system.1 Based on their unique and rigid skeleton, the compounds have been utilized in fields such as host–guest chemistry, supramolecular chemistry, and material chemistry.2 Studies have reported several synthetic methods for triptycene synthesis, e.g., the Diels–Alder reaction of anthracenes and benzenes3 or quinones,4 the intramolecular Friedel–Crafts reaction,5 and the [2+2+2] cycloaddition of alkynes.6 Furthermore, we have recently developed a new synthetic method for triptycene based on a triple cycloaddition of one ynolate 1 to three benzyne 2 (Scheme 1).8 This method can be easily performed, where alkylolithium is added to a mixture of ynolate and a benzyne precursor. The yield of triptycene 3 varies from 27–69% when employing fluorobenzene or 3-fluoroanisole as the benzyne precursor. In the cases that resulted in low yields, abundant benzyne byproducts were produced. Generally, short-lived benzyne should be trapped by an excess of arynophiles. However, the triple cycloaddition reaction does not use the excess ynolate because the reaction needs at least three equivalents of benzyne to ynolate. Therefore, it is important to generate benzyne incrementally. Moreover, the generation of benzyne using a strong base, such as alkyl- or aryllithium, competes with the side reactions triggered by the addition of the base to benzyne. Thus, suppression of these side reactions is key to improving the yield but is not easily achieved in a batch system because inefficient mixing causes an uneven distribution of concentration and temperature in the reaction vessel.

These issues in the batch system could be solved using microflow systems, which have the potential to provide constant reaction parameters, such as reaction temperature, time, and concentration, due to high mixing efficiency and rapid heat transfer.9 Furthermore, the rapid diffusion of the reaction mixture helps suppress undesired contact of intermediates or the product with the starting materials and reagents. Therefore, it has been illustrated that the microflow conditions are beneficial in many exothermic reactions via unstable intermediates such as alkyllithium-initi-
ated reactions. For example, Yoshida and co-workers reported that the efficient formation and reaction of benzyne were achieved using microwow systems.\(^8\) We have reported the flow synthesis of ynolate from o,a-dibromoester using alkylithium\(^7d\) or lithium naphthalenide and achieving other reactions of ynolates under microwow conditions.\(^1\) Based on these results, we envisioned that microwow systems could improve the efficiency of the synthesis of triptycene through the precise control of reaction conditions. Thus, this report details the flow synthesis of triptycene via triple cycloaddition of ynolate and benzyne using microwow reactors.

The investigation began with the reaction using o-bromoodiodobenzene and PhLi for the preparation of benzyne (Table 1).\(^10\) The reaction was carried out using a Comet X-01 mixer (Techno Applications Co., Ltd, Tokyo, Japan) as a microwor. A solution of lithium ynolate \(1\) was prepared in advance by our method in a batch system.\(^7d\) In entry 1, a solution of PhLi (0.97 M) and a mixture of ynolate \(1\) (0.12 M) and benzyne precursor \(2\) (0.70 M) were pumped into the reactor at a 1.0 mL/min in a ratio of \(1/2/\text{PhLi} = 1:6:8\). The solutions were mixed at \(-20^\circ\)C, and the resulting mixture flowed through a tube with 0.8 mL volume, where the residence time was estimated by NMR to be approximately 21%. In entry 2, the reaction temperature was increased to 40 °C and 60 °C, the yield of triptycene \(3\) was estimated by NMR to be approximately 21%. In entries 2 and 3, the reaction temperature was increased to 0 °C and 22 °C, which resulted in higher yields of \(3\). When the ratio of \(1/2/\text{PhLi}\) was changed to 1:8:11 and 1:3:4, the yields were diminished (entries 4 and 5). The faster flow rates (1.5 mL/min and 2.0 mL/min), with residence times of 16 s and 12 s, were effective, thus synthesizing the product with yields of 33% and 31%, respectively (entries 6 and 7).

For comparison, the reaction was also performed in the batch system under the conditions corresponding to entry 6 in Table 1, and triptycene \(3\) was obtained with a 31% NMR yield (25% isolated yield), which was slightly less than that obtained in the microwow conditions (Scheme 2). This may indicate that the microwow system improved the efficiency of the triple cycloaddition of ynolate to benzyne. However, we realized that it is not easy to suppress the side reactions under these microwow conditions, because the formation of many byproducts was still observed on the GC–MS analysis of the crude products (see Figure S1 in the Supporting Information). The major byproducts were biphenyls and o-terphenyls, which would be formed by the addition of aryllithium intermediates to benzynes. Although this result indicates that benzyne was generated efficiently, most of the benzyne was wasted in the side reactions.

Thus, we changed the precursor of benzyne to o-(trifluoromethanesulfonyloxy)phenylboronic acid pinacol ester \(4\) developed by Hosoya and co-workers (Table 2).\(^12,13\) It has been reported that the treatment of alkylithium with \(4\) generates borosolv 5, which is stable at 0 °C and then converts into benzyne when warmed to room temperature. Based on this, we envisioned that the undesired addition reactions to benzyne could be suppressed using precursor \(4\) because, by the formation of the borate complex in advance, the coexistence of nucleophilic butyllithium and benzyne can be avoided. Slow generation of benzyne could also be achieved by temperature control of the borate complex solutions in the second step. The microreactor system consisted of two mixers, \(A\) and \(B\). The solutions of precursor \(4\) and \(s\)-BuLi were introduced into the microreactor and combined in mixer \(A\) at \(-78^\circ\)C. The resulting solution of borate complex \(5\) was mixed with a solution of ynolate \(1\) in mixer \(B\) and then passed through the tube maintained at the indicated temperature. In entry 1, the ratio of \(1/4/s\)-BuLi was 1:6:6, and the reaction was performed at 23 °C to provide triptycene \(3\) with a 19% yield. When the reaction temperature was elevated to 40 °C and 60 °C, the yield of \(3\) increased to 33% and 29%, respectively (entries 2 and 3). However, the use of 5 or 8 equivalents of \(4\) and \(s\)-BuLi diminished the

![Scheme 2 Batch synthesis of triptycene 3 using o-bromoodiodobenzene](image-url)
yield (entries 4 and 5). In entry 6, the reaction employed a higher concentration of the solutions in comparison with entry 2, which resulted in no influence on the NMR yield and a 31% isolated yield of 3. It should be emphasized that GC-MS analysis of the crude products indicated considerable suppression of side reactions (see Figure S2 in the Supporting Information). The main byproducts were o-bromophenylboronic acid pinacol ester and biphenylene formed via dimerization of benzyne. These results suggest that the almost complete consumption of s-BuLi was achieved in the first step, and thus, the competitive addition reactions to benzyynes were largely suppressed. Therefore, although the yield was as much as one of the first approach as shown in Table 1, purification of triptycene 3 was much easier to perform in this approach. Furthermore, the batch reaction, which was performed under the conditions corresponding to entry 6 in Table 2, synthesized triptycene 3 with a 21% yield (24% NMR yield, Scheme 3). Thus, the reaction efficiency of the triple cycloaddition reaction was also improved under the microflow conditions probably due to the high mixing efficiency.

Finally, ynolate 1, prepared under the microflow conditions, was directly employed for the flow synthesis of triptycene (Scheme 4). The solutions of o,a-dibromoester (1.20 M) and lithium naphthalenide (0.25 M) were mixed in mixer A at 22 °C to produce ynolate 1. At the same time, the solutions of benzyne precursor 4 (0.38 M) and s-BuLi (0.38 M) were pumped into mixer B. These two resulting solutions were then introduced into mixer C, and the reaction mixture passed through a tube maintained at 40 °C for 16 s. Triptycene 3 was successfully obtained with a 16% yield judged by the NMR spectra. Although the yield was less than that of the prior flow systems, the current flow system provided advantages, including that the whole reaction was completed in only one minute.

In conclusion, we have developed flow synthesis of triptycene using triple cycloadditions of ynolate-benzyne under microflow conditions. Using Hosoya’s benzyne precursor, dramatic suppression of side reactions, and improvement in yield compared with the corresponding batch system was achieved. This can be attributed to the microflow conditions, such as efficient mixing and rapid heat transfer.
transfer. The flow reaction was also performed using yno-late, which was prepared under microflow conditions, syn-
thesizing the triptycene in only one minute. This is the first report for flow synthesis of triptycene, as far as we know.
Further improvement of the reaction efficiency is now un-
der investigation in our group.

Funding Information
This work was partially supported by the Japan Society for the Pro-
motion of Science (JSPS KAKENHI, Grant No. JP18H02557,
JP18H04649, JP18H04624, JP20H04780, JP17K14449, and
JP20K15283), the NAGASE Science Technology Foundation (M.S.),
the Asahi Glass Foundation (T.I.), the Qdai-jump Research Program Waka-
bu Challenge at Kyushu University (T.I.), and the IRCCS Fusion Emer-
gent Research Program (T.I.). This work was performed under the
Cooperative Research Program ‘Network Joint Research Center for
Materials and Devices’.

Supporting Information
Supporting information for this article is available online at

References and Notes

(1) (a) Chen, C.-F.; Ma, Y.-X. Iptycenes Chemistry. Springer: Berlin/Hei-

(2) (a) Chen, C.-F.; Han, Y. Acc. Chem. Res. 2018, 51, 2093. (b) Chen,
Guo, R. Ind. Eng. Chem. Rev. 2017, 56, 4220. (d) Han, Y.; Meng, Z.;
Ma, Y.-X.; Chen, C.-F. Acc. Chem. Res. 2014, 47, 2026. (e) Sawyer, T. M.

(3) (a) Wittig, G.; Ludwig, R. Angew. Chem. 1956, 68, 40. (b) Stiles,
M.; Miller, R. G. J. Am. Chem. Soc. 1960, 82, 3802. (c) Le Goff, E.
J. Am. Chem. Soc. 1962, 84, 3786. (d) Friedman, L.; Logullo, F. M.
M.; Inoue, K.; Todaka, M.; Fukatsu, N.; Meng, Z.; Fujiwara, Y.
Singh, K. N.; Bharatam, P. V.; Sharma, A. K.; Lata, S.; Kaur, A.
Angew. Chem. Int. Ed. 2008, 47, 4703. (h) Yoshimura, A.; Fuchs, J.
M.; Middleton, K. R.; Maskava, A. V.; Rohde, G. T.; Saito, A.;
Postnikov, P. S.; Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V.

(4) (a) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. J. Am. Chem. Soc. 1942,
64, 2649. (b) Wiehe, A.; Seng, M.; Kurzrock, H. Liebig Ann.,Recd.
1997, 1951. (c) Matsumoto, K.; Nakano, R.; Hirokane; T.

(5) (a) Taylor, M. S.; Swager, T. M. Org. Lett. 2007, 9, 3695. (b) Van
2020, 26, 3004.

Matsumoto, K. In Patai's Chemistry of Functional Groups;
(c) Shindo, M. Tetrahedron 2007, 63, 10. (d) Shindo, M.;

(8) (a) Umezui, S.; dos Passos Gomes, G.; Yoshinaga, T.; Sakae, M.;
Matumato, K.; Iwata, T.; Alabugin, I.; Shindo, M. Angew. Chem.

(11) (a) Umeku, S.; Yoshiwa, T.; Tokesi, M.; Shindo, M. Tetrahedron

(13) Representative Procedure for the Synthesis of 9-Hydroxyl-
triptycene 3 Using Benzyne Precursor 4

Solution A
o-(Trifluoromethanesulfonyl)arylboronic acid pinacol ester
(4, 1.58 g, 4.50 mmol) was dissolved in EtO (10.0 mL), and the
resulting solution was put in a syringe.

Solution B
s-Buli (0.97 M in cyclohexane and hexane) was diluted with
hexane to be 0.45 M solutions, 10.0 mL of which was put in a
syringe.

Solution C
to a solution of ethyl 2,2-dibromohexanoate (227 mg, 0.750
mmol) in EtO (3.0 mL) cooled to –78 °C under argon atmo-
sphere, was added dropwise a solution of s-Buli (1.50 M in pen-
tane, 2.0 mL, 3.0 mmol). The resulting yellow solution was
stirred for 30 min at –78 °C and then for another 30 min at 0 °C.
The resulting colorless solution of ynone was diluted with EtO
4 to make total volume of 10.0 mL and put in a
syringe.

Reactor
A flow microreactor system consisting of two micromixers
(M1 and M2, comet X each) and two microtube reactors
(R1: ø = 1000 μm, L = 100 cm, V = 0.8 mL and R2: ø = 1000 μm, L = 100 cm, V = 0.8 mL) was used. M1, M2, and R1 were dipped
in a cooling bath at –78 °C, and R2 was dipped in a warming
bath at 40 °C. Solutions A and B were introduced to M1 using
syringe pumps in a flow rate of 1.0 mL/min each. The resulting
solution was passed through R1 and was mixed with solution C
(flow rate: 1.0 mL/min) in M2. The resulting solution was then
poured into 1 M HCl. After a steady state was reached, the
product solution was collected for 120 s (corresponding to 0.15
mmol of ynone solution). The collected mixture was extracted
with CHCl3. The combined organic phase was washed with
brine, dried over MgSO4, filtered, and concentrated. The crude
product (24% NMR yield) was purified by silica gel column chromo-
matography (hexane–EtOAc = 25:1) to afford compound 3 (15.2
mg, 31%) as a white solid.

Triptycene 3
1H NMR (600 MHz, CDCl3): δ = 7.54 (d, J = 6.9 Hz, 3 H), 7.39 (d,
J = 6.9 Hz, 3 H), 7.03–7.08 (m, 6 H), 3.25 (s, 1 H), 2.93 (t, J = 7.6 Hz, 2
H), 2.12–2.17 (m, 2 H), 1.79–1.85 (m, 2 H), 1.16 (t, J = 7.2 Hz, 3 H).

The NMR spectrum was matched with that of our previous report.