Synthesis 2021; 53(07): 1237-1246
DOI: 10.1055/s-0040-1706105
feature

Synthesis of Pyrrolo[1,2-a][1,6]- and [1,8]naphthyridines by Alkyne-Carbonyl Metathesis

Marian Blanco Ponce
a   Institute of Chemistry, University of Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
b   University of Granma, Centre for Study of Applied Chemistry, Carretera Manzanillo Km 17½, 85100, Bayamo, Cuba
,
Silvio Parpart
a   Institute of Chemistry, University of Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
,
Alexander Villinger
a   Institute of Chemistry, University of Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
,
Eugenio Torres Rodríguez
b   University of Granma, Centre for Study of Applied Chemistry, Carretera Manzanillo Km 17½, 85100, Bayamo, Cuba
,
Peter Ehlers
a   Institute of Chemistry, University of Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
c   Leibniz-Institute for Catalysis, A.-Einstein-Str. 29, 18059 Rostock, Germany
,
Peter Langer
a   Institute of Chemistry, University of Rostock, A.-Einstein-Str. 3a, 18059 Rostock, Germany
c   Leibniz-Institute for Catalysis, A.-Einstein-Str. 29, 18059 Rostock, Germany
› Author Affiliations


Abstract

A concise and modular synthesis of pyrrolo[1,2-a][1,6]- and [1,8]naphthyridines by a one-pot two-step reaction consisting of electrophilic acylation followed by an alkyne-carbonyl-metathesis reaction as the final cyclization step is reported. This developed synthetic methodology allows the facile synthesis of these heterocyclic core structures in mainly high overall yields under metal-free conditions. Reaction conditions are carefully optimized and display a novel supplement to access these tricyclic heterocyclic compounds.

Supporting Information



Publication History

Received: 08 October 2020

Accepted after revision: 19 November 2020

Article published online:
21 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Schuter M, Blechert S. Angew. Chem., Int. Ed. Engl. 1997; 36: 2036
    • 1b Chatterjee AK, Choi T.-L, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
    • 1c Villar H, Frings M, Bolm C. Chem. Soc. Rev. 2007; 36: 55
    • 1d van den Broek SA. M. W, Meeuwissen SA, van Delft FL, Rutjes FP. J. T. In Metathesis in Natural Products: Strategies, Substrates and Catalysts . Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010: 45-85
    • 1e Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
    • 1f Ehrhorn H, Tamm M. Chem. Eur. J. 2019; 25: 3190
    • 2a Saito A, Tateishi K. Heterocycles 2016; 92: 607
    • 2b Becker MR, Watson RB, Schindler CS. Chem. Soc. Rev. 2018; 47: 7867
    • 3a Büchi G, Kofron JT, Roller E, Rosenthal D. J. Am. Chem. Soc. 1956; 78: 876
    • 3b Jones GII, Acquadro MA, Carmody MA. J. Chem. Soc., Chem. Commun. 1975; 206
    • 3c Pérez-Ruiz R, Miranda MA, Alle R, Meerholz K, Griesbeck AG. Photochem. Photobiol. Sci. 2006; 5: 51
    • 3d Valiulin RA, Kutateladze AG. Org. Lett. 2009; 11: 3886
  • 4 Vieregge HM, Bos HJ. T, Arens JF. Recl. Trav. Chim. Pays-Bas 1959; 78: 664
    • 5a Jin T, Yamamoto Y. Org. Lett. 2008; 10: 3137
    • 5b Saito A, Umakoshi M, Yagyu N, Hanzawa Y. Org. Lett. 2008; 10: 1783
    • 5c Jin T, Yang F, Liu C, Yamamoto Y. Chem. Commun. 2009; 3533
    • 5d Escalante L, González-Rodríguez C, Varela JA, Saá C. Angew. Chem. Int. Ed. 2012; 51: 12316
    • 5e McFarlin AT, Watson RB, Zehnder TE, Schindler CS. Adv. Synth. Catal. 2020; 362: 365
  • 7 Parpart S, Boldt S, Ehlers P, Langer P. Org. Lett. 2018; 20: 122
    • 8a Duelfer T, Blythin DJ. Patent US 4996212, 1991
    • 8b Dress KR, Hu Q, Johnson TW, Plewe MB, Tanis SP, Zhu H, Zhang J. Patent WO 2005/103051 A1, 2005
    • 8c Dong Q, Lawson JD, Wallace MB, Kanouni T. Patent EP 2 440 558 B1, 2010
    • 8d Barawkar D, Bende T, Zahler R, Bandyopadhyay A, Sarangthem RS, Doshi J, Waman Y, Jadhav R, Singh UP. Patent EP 2 688 890 B1, 2012
    • 8e Elkanzi NA. A, Ghoneim AA, Bakr RB. Pharma Chem. 2019; 11: 6
    • 9a Cardinaud I, Gueiffier Debouzy J.-C, Milhavet J.-C, Chapat J.-P. Heterocycles 1993; 36: 2513
    • 9b Li L, Chua WK. S. Tetraheron Lett. 2011; 52: 1392
    • 9c Gou G.-Z, Zhou B, Yan H.-P, Hong Y, Liu W, Chi S.-M, Mang C.-Y. J. Chem. Sci. 2016; 128: 1813
    • 10a Morioko R, Nobushige K, Satoh T, Hirano K, Miura M. Org. Lett. 2015; 17: 3130
    • 10b Li S.-S, Wang C.-Q, Lin H, Zhang X.-M, Dong L. Org. Lett. 2015; 17: 3018
    • 10c Li S.-S, Liu C.-F, Xia Y.-Q, Li W.-H, Zhang G.-T, Zhang X.-M, Dong L. Org. Biomol. Chem. 2016; 14: 5214
    • 11a Otani T, Saito T, Sakamoto R, Osada H, Hirahara A, Furukawa N, Kutsumura N, Matsuo T, Tamao K. Chem. Commun. 2013; 49: 6206
    • 11b Tateno K, Ogawa R, Sakamoto R, Tsuchiya M, Kutsumura N, Otani T, Ono K, Kawai H, Saito T. J. Org. Chem. 2018; 83: 690
  • 12 Chai DI, Lautens M. J. Org. Chem. 2009; 74: 3054
  • 13 Das A, Ghosh I, König B. Chem. Commun. 2016; 52: 8695
    • 14a Pierrat P, Hesse S, Cebrián Gros PC. Org. Biomol. Chem. 2017; 15: 8568
    • 14b Flader A, Parpart S, Ehlers P, Langer P. Org. Biomol. Chem. 2017; 15: 3216
  • 15 Flader A, Ohlendorf L, Ehlers P, Ammon E, Villinger A, Langer P. Adv. Synth. Catal. 2019; 361: 2981
  • 16 CCDCs 2035665 and 2035666 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.