Synthesis 2021; 53(06): 1035-1045
DOI: 10.1055/s-0040-1705994
short review

Polycyclic Compounds from Allenes via Palladium-Mediated Intramolecular Carbopalladation/Nucleophilic Substitution Cascade Processes

Milos D. Jovanovic
,
Milos R. Petkovic
,
Vladimir M. Savic
Financial support from the Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja (Ministry of Education, Science and Technological Development) (Grant no. 451-03-68/2020-14/200161) is greatly appreciated.


Abstract

In recent decades transition metals have made a substantial contribution to the development of novel synthetic processes, with palladium catalysis being, arguably, at the forefront of this research. The efficiency of Pd-promoted C–C or C–X bond formation along with a variety of other transformations renders this metal an indispensable tool in synthetic organic chemistry. Of particular interest are Pd-catalysed multicomponent cascade reactions as they often allow the creation of complex structures from relatively simple starting materials, mimicking in this sense biochemical processes. Allenes as partners in Pd-promoted cascades involving carbopalladation/nucleophilic substitutions have been extensively studied in recent years. Many tactical variants have been explored showing a high level of efficiency and chemoselectivity with predictable outcomes. This short review is focused on intramolecular processes of this type because they provide access to relatively complex polycyclic products, possessing structural features often found in natural products and related compounds. Various approaches are discussed with the intention to demonstrate their applicability and synthetic potential.

1 Introduction

2 Intramolecular Palladium-Promoted Cascades of Allenes

3 Class I Cyclisations

4 Class II Cyclisations

5 Class III Cyclisations

6 Class IV Cyclisations

7 Conclusion



Publication History

Received: 25 September 2020

Accepted after revision: 13 November 2020

Article published online:
16 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gandon V, Stephen H, Takeshi K, Max M. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations: Cumulenes and Allenes, Vol. 44. Georg Thieme Verlag; Stuttgart: 2014
  • 2 Schuster HF, Coppola GM. Allenes in Organic Synthesis, 1st ed. John Wiley and Sons; New York: 1984
  • 3 Synthesis of Acetylenes, Allenes and Cumulene: Methods and Techniques, 1st ed. Brandsma L. Elsevier; Boston, Amsterdam: 2004
  • 4 Modern Allene Chemistry (2 Volume Set), 1st ed. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
  • 5 Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
  • 6 Armstrong RJ, Nandakumar M, Dias RM. P, Noble A, Myers EL, Aggarwal VK. Angew. Chem. 2018; 130: 8335
  • 7 Bayeh-Romero L, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 13788
  • 8 Skotnitzki J, Kremsmair A, Keefer D, Schüppel F, Le Cacher de Bonneville B, de Vivie-Riedle R, Knochel P. Chem. Sci. 2020; 11: 5328
  • 9 Wang H, Luo H, Zhang Z.-M, Zheng W.-F, Yin Y, Qi anH, Zhang J, Ma S. J. Am. Chem. Soc. 2020; 142: 9763
  • 10 Hendon CH, Tiana D, Murray AT, Carbery DR, Walsh A. Chem. Sci. 2013; 4: 4278
  • 11 Soriano E, Fernández I. Chem. Soc. Rev. 2014; 43: 3041
  • 12 Dyker CA, Lavallo V, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2008; 47: 3206
  • 13 Patel DS, Bharatam PV. J. Org. Chem. 2011; 76: 2558
  • 14 Chen W.-C, Hsu Y.-C, Lee C.-Y, Yap GP. A, Ong T.-G. Organometallics 2013; 32: 2435
  • 15 Kleinpeter E, Koch A. J. Phys. Chem. A 2020; 124: 3180
  • 16 Burton BS, von Pechmann H. Ber. Dtsch. Chem. Ges. 1887; 20: 145
  • 17 Jones ER. H, Whitham GH, Whiting MC. J. Chem. Soc. 1954; 3201
  • 18 Lledó A, Pla-Quintana A, Roglans A. Chem. Soc. Rev. 2016; 45: 2010
  • 19 Reissig HU, Zimmer R. Synthesis 2017; 49: 3291
  • 20 Yang B, Qiu Y, Bäckvall JE. Acc. Chem. Res. 2018; 51: 1520
  • 21 Liu L, Ward RM, Schomaker JM. Chem. Rev. 2019; 119: 12422
  • 22 Bates RW, Satcharoen V. Chem. Soc. Rev. 2002; 31: 12
  • 23 Ma S. Pure Appl. Chem. 2006; 78: 197
  • 24 Shen HC. Tetrahedron 2008; 64: 3885
  • 25 Alcaide B, Almendros P, Alonso JM, Quiros MT, Gadzinski P. Adv. Synth. Catal. 2011; 353: 1871
  • 26 Muñoz MP. Chem. Soc. Rev. 2014; 43: 3164
  • 27 Yang B, Qiu Y, Jiang T, Wulff WD, Yin X, Zhu C, Bäckvall JE. Angew. Chem. Int. Ed. 2017; 56: 4535
  • 28 Fujihara T, Tsuji Y. Synthesis 2018; 50: 1737
  • 29 Beccalli EM, Broggini G, Christodoulou MS, Giofrè S. Transition Metal-Catalyzed Intramolecular Amination and Hydroamination Reactions of Allenes. In Advances in Organometallic Chemistry, Vol. 69. Pérez PJ. Academic Press; Oxford: 2018: 1
  • 30 Santhoshkumar R, Cheng C.-H. Asian J. Org. Chem. 2018; 7: 1151
  • 31 Posevins D, Li M.-B, Svensson Grape E, Inge AK, Qiu Y, Bäckvall JE. Org. Lett. 2020; 22: 417
  • 32 Shaw BL, Stringer AJ. Inorg. Chim. Acta 1973; 7: 1
  • 33 Malacria M, Fensterbank L, Gandon V. Computational Mechanisms of Au and Pt Catalyzed Reactions . In Topics in Current Chemistry, Vol. 302. Soriano E, Marco-Contelles J. Springer-Verlag; Berlin: 2011: 157
  • 34 Alcaide B, Almendros P. Adv. Synth. Catal. 2011; 353: 2561
  • 35 Krause N, Winter C. Chem. Rev. 2011; 111: 1994
  • 36 Yang W, Hashmi AS. K. Chem. Soc. Rev. 2014; 43: 2941
  • 37 Jeganmohan M, Cheng C.-H. Chem. Commun. 2008; 3101
  • 38 Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
  • 39 Lechel T, Pfrengle F, Reissig H.-U, Zimmer R. ChemCatChem 2013; 5: 2100
  • 40 Bras JL, Muzart J. Chem. Soc. Rev. 2014; 43: 3003
  • 41 Sala R, Broggini G. In Targets in Heterocyclic Systems: Chemistry and Properties, Vol. 22. Attanasi A, Merino P, Spinelli D. Società Chimica Italiana; Rome: 2019: 138
  • 42 Evans P, Hogg P, Grigg R, Nurnabi M, Hinsley J, Sridharan V, Suganthan S, Korn S, Collard S, Muir JE. Tetrahedron 2005; 61: 9696
  • 43 Anwar U, Grigg R, Rasparini M, Savic V, Sridharan V. Chem. Commun. 2000; 645
  • 44 Anwar U, Grigg R, Sridharan V. Chem. Commun. 2000; 933
  • 45 Cooper IR, Grigg R, MacLachlan WS, Sridharan V, Thornton-Pett M. Tetrahedron Lett. 2003; 44: 403
  • 46 Grigg R, Blacker J, Kilner C, McCaffrey S, Savic V, Sridharan V. Tetrahedron 2008; 64: 8177
  • 47 Cleghorn LA. T, Grigg R, Savic V, Simic M. Tetrahedron 2008; 64: 8731
  • 48 Grigg R, Köppen I, Rasparini M, Sridharan V. Chem. Commun. 2001; 964
  • 49 Beccalli EM, Bernasconi A, Borsini E, Broggini G, Rigamonti M, Zecchi GJ. Org. Chem. 2010; 75: 6923
  • 50 Trofimov BA, Tarasova OA, Shemetova MA, Afonin AV, Klyba LV, Baikalova LV, Mikhaleva AI. Russ. J. Org. Chem. 2003; 39: 408
  • 51 Grigg R, Savic V. Chem. Commun. 2000; 873
  • 52 Jeffery T. Tetrahedron 1996; 52: 10113
  • 53 Beccalli EM, Broggini G, Clerici F, Galli S, Kammerer C, Rigamonti M, Sottocornola S. Org. Lett. 2009; 11: 1563
  • 54 Deepa, Yadav GD, Chaudhary P, Aalam MJ, Meena DR, Singh S. Chirality 2020; 32: 64
  • 55 Petkovic M, Nasufovic V, Djukanovic D, Vujosevic ZT, Jadranin M, Matovic R, Savic V. Eur. J. Org. Chem. 2016; 1279
  • 56 Inuki S, Oishi S, Fujii N, Ohno H. Org. Lett. 2008; 10: 5239
  • 57 Inuki S, Iwata A, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 2072
  • 58 Henry R, Lawrence M, McIntosh M, Scola P, Harris D, Weinreb S. Tetrahedron Lett. 1989; 30: 5709
  • 59 Iwata A, Inuki S, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 5506
  • 60 Hiroi K, Hiratsuka Y, Watanabe K, Abe I, Kato F, Hiroi M. Synlett 2001; 263
  • 61 Mak JY, Pouwer RH, Williams CM. Angew. Chem. Int. Ed. 2014; 53: 13664
  • 62 Hiroi K, Hiratsuka Y, Watanabe K, Abe I, Kato F, Hiroi M. Tetrahedron: Asymmetry 2002; 13: 1351
  • 63 Kayaki Y, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 1997; 70: 1135
  • 64 Hiroi K, Watanabe K. Heterocycles 2003; 59: 453
  • 65 Jeong I.-Y, Nagao Y. Tetrahedron Lett. 1998; 39: 8677
  • 66 Nagao Y, Tanaka S, Ueki A, Jeong I.-Y, Sano S, Shiro M. Synlett 2002; 480
  • 67 Okano A, Mizutani T, Oishi S, Tanaka T, Ohno H, Fujii N. Chem. Commun. 2008; 3534
  • 68 Nakano S, Inoue N, Hamada Y, Nemoto T. Org. Lett. 2015; 17: 2622
  • 69 Inoue N, Nakano S, Harada S, Hamada Y, Nemoto T. J. Org. Chem. 2017; 82: 2787
  • 70 Nakano S, Hamada Y, Nemoto T. Tetrahedron Lett. 2018; 59: 760