Synthesis 2022; 54(04): 797-863
DOI: 10.1055/s-0040-1705983
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

IntraMolecular Diels–Alder Reactions of Vinylarenes and Alkynyl Arenes (the IMDAV Reaction)

Gaddam Krishna
,
Dmitry G. Grudinin
,
Eugeniya V. Nikitina
,
Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [Award no. 075-03-2020-223 (FSSF-2020-0017)]. G.K. declares that Section 7 of this publication was prepared with the support of RUDN University ‘Program 5-100’.


Abstract

This comprehensive review summarizes the published literature data concerning the intramolecular Diels–Alder reactions of vinylarenes (the IMDAV reaction) and alkynyl arenes from 1970 to 2019, and covers mainly intramolecular [4+2] cycloaddition reactions of vinyl- or acetylene-substituted furans, thiophenes, pyrroles, indoles, imidazoles, benzenes, and naphthalenes, in which the unsaturated substituent is linked directly to an arene moiety. The selected area of the Diels–Alder reaction differs from other forms of [4+2] cycloadditions due to the uniqueness of the diene fragment, which, along with an exocyclic multiple bond, includes the double bond of an aromatic or heteroaromatic nucleus in its system. Thus, during the formation of the [4+2] cycloaddition intermediate, the aromaticity of furan, thiophene and even benzene rings is broken, leading, as a rule, to the formation of heterocyclic structures rarely accessible by other methods, in contrast to the majority of intermolecular Diels–Alder reactions, with the highest degree of chemo-, regio-, and diastereoselectivity. Therefore, the IMDAV approach is often used for the synthesis of naturally occurring and bioactive molecules, which are also discussed in this review alongside other applications of this reaction. Whenever possible, we have tried to avoid examples of radical, photochemical, oxidative, precious-metal-complex-catalyzed cyclizations and other types of formal [4+2] cycloadditions, focusing on thermal Diels–Alder reactions in the first step, according to the classical mechanism. The second stage of the process, aromatization, is unique for many initial substrates, and hence considerable attention in this overview is given to the detailed description of the reaction mechanisms.

1 Introduction

2 IMDAV Reactions of Vinylfurans

2.1 Alkenes as Internal Dienophiles

2.2 Alkynes and Allenes as Internal Dienophiles

3 IMDAV Reactions of Vinylthiophenes

3.1 Alkenes as Internal Dienophiles

3.2 Alkynes as Internal Dienophiles

4 IMDAV Reactions of Vinylbenzothiophenes

5 IMDAV Reactions of Vinylpyrroles

6 IMDAV Reactions of Vinylindoles

6.1 Alkenes as Internal Dienophiles

6.2 Alkynes as Internal Dienophiles

7 IMDAV Reactions of Styrenes and Vinylnaphthalenes

7.1 Alkenes as Internal Dienophiles

7.2 Alkynes as Internal Dienophiles

7.3 Alkynes as Internal Dienophiles in Aryl Acetylenes (the Intramolecular Dehydro Diels–Alder Reaction)

8 IMDAV Reactions of Vinylimidazoles, Vinylisoxazoles and Vinylpyridines

9 Conclusion

10 Abbreviations



Publication History

Received: 11 September 2020

Accepted after revision: 20 October 2020

Article published online:
14 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Alder K, Schumacher M. Fortschr. Chem. Org. Naturst. 1953; 10: 1
    • 2a Heravi MM, Vavsari VF. RSC Adv. 2015; 5: 50890
    • 2b Parvatkar PT, Kadam HK, Tilve SG. Tetrahedron 2014; 70: 2857
    • 2c Padwa A, Flick A. Adv. Heterocycl. Chem. 2013; 110: 1
    • 2d Juhl M, Tanner D. Chem. Soc. Rev. 2009; 38: 2983
    • 2e Takao K, Munakata R, Tadano K. Chem. Rev. 2005; 105: 4779
    • 2f Zubkov FI, Nikitina EV, Varlamov AV. Russ. Chem. Rev. 2005; 74: 639
    • 2g Ciganek E. Org. React. 1984; 32: 1
    • 2h Andrus MB, Saavedra DI. Tetrahedron 2019; 75: 2129
    • 2i Wessig P, Müller G. Chem. Rev. 2008; 108: 2051
    • 3a Klemm LH, Gopinath KW. J. Heterocycl. Chem. 1965; 2: 225
    • 3b Klemm LH, Gopinath KW, Hsu Lee D, Kelly FW, Trod E, McGuire TM. Tetrahedron 1966; 22: 1797
    • 3c Klemm LH, Gopinath KW. Tetrahedron Lett. 1963; 4: 1243
  • 4 Schmitz E, Heuck U, Preuschhof H, Gründemann E. Prakt. Chem. 1982; 324: 581
  • 5 Kotsuki H, Kawamura A, Ochi M. Chem. Lett. 1981; 917
    • 6a Bohlmann F, Zdero C, Grenz M. Chem. Ber. 1974; 107: 2730
    • 6b Bohlmann F, Fritz G. Tetrahedron Lett. 1981; 22: 95
    • 7a Cooper JA, Cornwall P, Dell CP, Knight DW. Tetrahedron Lett. 1988; 29: 2107
    • 7b Cornwall P, Dell CP, Knight DW. J. Chem. Soc., Perkin Trans. 1 1993; 2395
    • 8a Fischer K, Hünig S. Chem. Ber. 1987; 120: 325
    • 8b Tada M, Moriyama Y, Tanahashi Y, Takahashi T, Fukuyama M, Sato K. Tetrahedron Lett. 1971; 12: 4007
    • 8c Tada M, Moriyama Y, Tanahashi Y, Takahashi T. Bull. Chem. Soc. Jpn. 1974; 47: 1999
    • 9a Kazlauskas R, Murphy PT, Wells RJ, Daly JJ, Schöholzer P. Tetrahedron Lett. 1978; 19: 4951
    • 9b Mong S, Votta B, Sarau HM, Foley JJ, Schmidt D, Carte BK, Poehland B, Westley J. Prostaglandins 1990; 39: 89
  • 10 Patre RE, Gawas S, Sen S, Parameswaran PS, Tilve SG. Tetrahedron Lett. 2007; 48: 3517
  • 11 Uchida T, Rodriquez M, Schreiber SL. Org. Lett. 2009; 11: 1559
  • 12 Kim KH, Lee S, Lee J, Go MJ, Kim JN. Tetrahedron Lett. 2013; 54: 5739
  • 13 Kim KH, Lim JW, Moon HR, Kim JN. Bull. Korean Chem. Soc. 2014; 35: 3254
    • 14a Horak YI, Lytvyn RZ, Homza YV, Zaytsev VP, Mertsalov DF, Babkina MN, Nikitina EV, Lis T, Kinzhybalo V, Matiychuk VS, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2015; 56: 4499
    • 14b Zubkov FI, Zaytsev VP, Mertsalov DF, Nikitina EV, Horak YI, Lytvyn RZ, Homza YV, Obushak MD, Dorovatovskii PV, Khrustalev VN, Varlamov AV. Tetrahedron 2016; 72: 2239
  • 15 Sugiura H, Yamazaki S, Ogawa A. J. Heterocycl. Chem. 2019; 56: 2592
  • 16 Sun S, Murray WV. J. Org. Chem. 1999; 64: 5941
    • 17a Hu Z, Dong J, Li Z, Yuan B, Wei R, Xu X. Org. Lett. 2018; 20: 6750
    • 17b Ito C, Furukawa H. Chem. Pharm. Bull. 1990; 38: 1548
    • 17c Wu T.-S, Huang S.-C, Wu P.-L. Heterocycles 1997; 45: 969
    • 18a Poplevin DS, Nikitina EV, Zaytsev VP, Varlamov AV, Tilve SG, Zubkov FI. Chem. Heterocycl. Compd. 2018; 54: 451
    • 18b Spare LK, Falsetta P, Gilbert J, Harman DG, Baker MA, Li F, McCluskey A, Clegg JK, Sakoff JA, Aldrich-Wright JR, Gordon CP. ChemMedChem 2017; 12: 130
    • 18c Gordon CP, Young KA, Robertson MJ, Hill TA, McCluskey A. Tetrahedron 2011; 67: 554
    • 18d Gordon CP, Byrne N, McCluskey A. Green Chem. 2010; 12: 1000
  • 19 Bober AE, Proto JT, Brummond KM. Org. Lett. 2017; 19: 1500
  • 20 Nagao K, Yamazaki A, Ohmiya H, Sawamura M. Org. Lett. 2018; 20: 1861
  • 21 Hayakawa K, Yodo M, Ohsuki S, Kanematsu K. J. Am. Chem. Soc. 1984; 106: 6735
  • 22 Hayakawa K, Nagatsugi F, Kanematsu K. J. Org. Chem. 1988; 53: 860
  • 23 Lu K, Luo T, Xiang Z, You Z, Fathi R, Chen J, Yang Z. J. Comb. Chem. 2005; 7: 958
  • 24 Inoue M, Takenaka H, Tsurushima T, Miyagawa H, Ueno T. Tetrahedron Lett. 1996; 37: 5731
    • 25a Drew MG. B, Jahans A, Harwood LM, Apoux SA. B. H. Eur. J. Org. Chem. 2002; 3589
    • 25b Marrero JG, Harwood LM. Tetrahedron Lett. 2009; 50: 3574
    • 25c Bugni TS, Janso JE, Williamson RT, Feng X, Bernan VS, Greenstein M, Carter GT, Maiese WM, Ireland CM. J. Nat. Prod. 2004; 67: 1396
  • 26 Dell CP, Smith EH. J. Chem. Soc., Perkin Trans. 1 1985; 747
  • 27 Kudoh T, Mori T, Shirahama M, Yamada M, Ishikawa T, Saito S, Kobayashi H. J. Am. Chem. Soc. 2007; 129: 4939
    • 28a Horak YI, Lytvyn RZ, Laba Y.-OV, Homza YV, Zaytsev VP, Nadirova MA, Nikanorova TV, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2017; 58: 4103
    • 28b Nadirova MA, Laba Y.-OV, Zaytsev VP, Sokolova JS, Pokazeev KM, Anokhina VA, Khrustalev VN, Horak YI, Lytvyn RZ, Siczek M, Kinzhybalo V, Zubavichus YV, Kuznetsov ML, Obushak MD, Zubkov FI. Synthesis 2020; 52: 2196
  • 29 Cox MT. J. Chem. Soc., Chem. Commun. 1975; 903

    • For very recent work regarding kinetic and thermodynamic control in intramolecular Diels–Alder reactions, see:
    • 30a Borisova KK, Kvyatkovskaya EA, Nikitina EV, Aysin RR, Novikov RA, Zubkov FI. J. Org. Chem. 2018; 83: 4840
    • 30b Borisova KK, Nikitina EV, Novikov RA, Khrustalev VN, Dorovatovskii PV, Zubavichus YV, Kuznetsov ML, Zaytsev VP, Varlamov AV, Zubkov FI. Chem. Commun. 2018; 54: 2850
  • 31 Herz H.-G, Schatz J, Maas G. J. Org. Chem. 2001; 66: 3176
  • 32 Tang J.-S, Xie Y.-X, Wang Z.-Q, Deng C.-L, Li J.-H. Synthesis 2010; 3204
  • 33 Huang J, Du X, Hecke KV, Eycken EV. V, Pereshivko OP, Peshkov VA. Eur. J. Org. Chem. 2017; 4379
  • 34 Kim P, Tsuruda JM, Olmstead MM, Eisenberg S, Kurth MJ. Tetrahedron Lett. 2002; 43: 3963
  • 35 Gallagher T, Magnus P. Tetrahedron 1981; 37: 3889
    • 36a Farrow SC, Kamileen MO, Caputi L, Bussey K, Mundy JE. A, McAtee RC, Stephenson CR. J, O’Connor SE. J. Am. Chem. Soc. 2019; 141: 12979
    • 36b Kuehne ME, Bornmann WG, Earley WG, Marko I. J. Org. Chem. 1986; 51: 2913
  • 37 Tan PW, Seayad J, Dixon DJ. Angew. Chem. Int. Ed. 2016; 55: 13436
  • 38 Blechert S, Knier R, Schroers H, Wirth T. Synthesis 1995; 592
  • 39 Madalengoitia JS, Macdonald TL. Tetrahedron Lett. 1993; 34: 6237
  • 40 Torney P, Patre R, Tilve S. Synlett 2011; 639
  • 41 Tilve SG, Torney PS, Patre RE, Kamat DK, Srinivasan BR, Zubkov FI. Tetrahedron Lett. 2016; 57: 2266
  • 42 Yang B, Lu Z. J. Org. Chem. 2016; 81: 7288
  • 43 Macor JE. Heterocycles 1990; 31: 993
  • 44 Eberle MK, Shapiro MJ, Stucki R. J. Org. Chem. 1987; 52: 4661
  • 45 Grieco PA, Kaufman MD. J. Org. Chem. 1999; 64: 7586
  • 46 Kudoh T, Fujisawa S, Kitamura M, Sakakura A. Synlett 2017; 28: 2189
  • 47 Podwyssotzki V. Arch. Exp. Pathol. Pharmakol. 1880; 13: 29
  • 48 Hartwell JL, Schrecker AW. J. Am. Chem. Soc. 1951; 73: 2909
  • 49 Ara Y, Takeya T, Tobinaga S. Chem. Pharm. Bull. 1995; 43: 1977
  • 50 Takeya T, Akabane Y, Kotani E, Tobinaga S. Chem. Pharm. Bull. 1984; 32: 31
  • 51 Revesz L, Maigel H. Helv. Chim. Acta 1988; 71: 1697
  • 52 LeRoy H, Klemm LH, McGuire TM, Gopinath KW. J. Org. Chem. 1976; 41: 2571
  • 53 Oppolzer W, Achini R, Pfenninger E, Weber HP. Helv. Chim. Acta 1976; 59: 1186
  • 54 Yamazaki S, Sugiura H, Ohashi S, Ishizuka K, Saimu R, Mikata Y, Ogawa A. J. Org. Chem. 2016; 81: 10863
  • 55 Sugiura H, Yamazaki S, Go K, Ogawa A. Eur. J. Org. Chem. 2019; 204
  • 56 Sun SI, Turchi IJ, Xu D, Murray VW. J. Org. Chem. 2000; 65: 2555
    • 57a Pedrosa R, Andrés C, Nieto J. J. Org. Chem. 2002; 67: 782
    • 57b Pedrosa R, Sayalero S, Vicente M, Casado B. J. Org. Chem. 2005; 70: 7273
  • 58 Dawson JR, Mellor JM. Tetrahedron Lett. 1995; 36: 9043
  • 59 Voronov AA, Alekseeva KA, Ryzhkova EA, Zarubaev VV, Galochkina AV, Zaytsev VP, Majik MS, Tilve SG, Gurbanov AV, Zubkov FI. Tetrahedron Lett. 2018; 59: 1108
  • 60 Martin SF, Tu C, Kimura M, Simonsen SH. J. Org. Chem. 1982; 47: 3634
    • 61a Chukhajian EO, Ayrapetyan LV, Chukhajian ElO, Panosyan HA. Chem. Heterocycl. Compd. 2013; 49: 1274
    • 61b Chukhajian EO, Ayrapetyan LV, Chukhajian ElO, Panosyan HA. Chem. Heterocycl. Compd. 2012; 48: 1314
    • 61c Chukhajian EO, Ayrapetyan LV, Mkrtchyan HS, Chukhajian ElO, Panosyan HA. Russ. J. Org. Chem. 2019; 55: 1124
    • 61d Chukhajian EO, Ayrapetyan LV, Shahkhatuni KG, Chukhajian ElO, Mkrtchyan HS, Panosyan HA. Russ. J. Org. Chem. 2019; 55: 319
  • 62 Laird T, Ollis WD, Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1980; 1477
  • 63 Magedov IV, Evdokimov NM, Karki M, Peretti AS, Lima DT, Frolova LV, Reisenauer MR, Romero AE, Tongwa P, Fonari A, Altig J, Rogelj S, Antipin MYu, Shuster CB, Kornienko A. Chem. Commun. 2012; 48: 10416
    • 64a Klemm LH, Klemm RA, Santhanam PS, White DV. J. Org. Chem. 1971; 36: 2169
    • 64b Klemm LH, Santhanam PS. J. Org. Chem. 1968; 33: 1268
    • 64c Klemm LH, Lee DH, Gopinath KW, Klopfenstein CE. J. Org. Chem. 1966; 31: 2376
    • 64d Klemm LH, Santhanam PS. J. Heterocycl. Chem. 1972; 9: 423
    • 65a Stevenson R, Weber JV. J. Nat. Prod. 1991; 54: 310
    • 65b Klemm LH, Olson DR, White DV. J. Org. Chem. 1971; 36: 3740
  • 66 Klemm LH, Tran VT, Olson DR. J. Heterocycl. Chem. 1976; 13: 741
  • 67 Jiansheng T, Yexiang X, Zhiqiang W, Jinheng L. Chin. J. Org. Chem. 2011; 31: 653
  • 68 Kocsis LS, Brummond KM. Org. Lett. 2014; 16: 4158
  • 69 Hemmati S, Seradj H. Molecules 2016; 21: 820

    • For details on the isolation, biochemical properties and chemistry of these lignans, see:
    • 70a Calvo-Flores FG, Dobado J, Isac-García J, Martin-Martinez F. Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications . John Wiley & Sons; New York: 2015
    • 70b Ayhan U, Öztürk M. Rec. Nat. Prod. 2008; 2: 54
    • 70c Li S, Liang Z, Li J, Zhang X, Zheng R, Zhao C. Phytochem. Rev. 2020; 19: 337
    • 70d Teponno RB, Kusari S, Spiteller M. Nat. Prod. Rep. 2016; 33: 1044
    • 70e Albertson AK. F, Lumb J.-P. The Lignans: A Family of Biologically Active Polyphenolic Secondary Metabolites. In Recent Advances in Polyphenol Research, Vol. 6. John Wiley & Sons; Hoboken: 2019: 1-70
  • 71 Stevenson R, Block E. J. Org. Chem. 1971; 36: 3453
  • 72 Park J.-E, Lee J, Seo S.-Y, Shin D. Tetrahedron Lett. 2014; 55: 818
    • 73a Quan G, Chin Y, Lee H, Oh S. Biother. Res. Inst. 2009; 53: 110
    • 73b Khaled M, Jiang Z, Zhang L. J. Ethnopharmacol. 2013; 149: 24
  • 74 Saavedra DI, Rencher BD, Kwon D.-H, Smith SJ, Ess DH, Andrus MB. J. Org. Chem. 2018; 83: 2018
  • 75 Tanoguchi M, Kashima T, Saika H, Inoue T, Arimoto M, Yamaguchi H. Chem. Pharm. Bull. 1989; 37: 68
    • 76a Tanoguchi M, Arimoto M, Saika H, Yamaguchi H. Сhem. Pharm. Bull. 1987; 35: 4162
    • 76b Yamaguchi H, Arimoto M, Tanoguchi M, Ishida T, Inoue M. Сhem. Pharm. Bull. 1982; 30: 3212
    • 77a Chackalamannil S, Doller D, Clasby M, Xia Y, Eagen K, Lin Y, Tsai H.-A, McPhail AT. Tetrahedron Lett. 2000; 41: 4043
    • 77b Chackalamannil S, Doller D, Eagen K. Tetrahedron Lett. 2002; 43: 5101
  • 78 Benedetti E, Delcourt M.-L, Gatin-Fraudet B, Turcaud S, Micouin L. RSC Adv. 2017; 7: 50472
  • 79 Kocsis LS, Benedetti E, Brummond KM. Org. Lett. 2012; 14: 4430
    • 80a Misra R, Pandey RC, Silverton JV. J. Am. Chem. Soc. 1982; 104: 4478
    • 80b Boger DL, Hüter O, Mbiya K, Zhang M. J. Am. Chem. Soc. 1995; 117: 11839
  • 81 Toyota M, Terashima S. Tetrahedron Lett. 1989; 30: 829
  • 82 Liu L, Wang J, Zhou H. J. Org. Chem. 2015; 80: 4749
  • 83 Klemm LH, McGuire TM. J. J. Heterocycl. Chem. 1972; 9: 1215
  • 84 Ozawa T, Kurahashi T, Matsubara S. Org. Lett. 2011; 13: 5390
  • 85 Mun HJ, Seong EY, Ahn K.-H, Kang EJ. J. Org. Chem. 2018; 83: 1196
  • 86 Kocsis LS, Kagalwala HN, Mutto S, Godugu B, Bernhard S, Tantillo DJ, Brummond KM. J. Org. Chem. 2015; 80: 11686
  • 87 Ruijter E, Garcia-Hartjes J, Hoffmann F, van Wandelen LT. M, de Kanter FJ. J, Janssen E, Orru RV. A. Synlett 2010; 2485
    • 88a Li W, Zhou L, Zhang J. Chem. Eur. J. 2016; 22: 1558
    • 88b Pankova AS, Shestakov AN, Kuznetsov MA. Russ. Chem. Rev. 2019; 88: 594
    • 89a Michael A, Bucher JE. Ber. Dtsch. Chem. Ges. 1895; 28: 2511
    • 89b Pfeiffer P, Moller W. Ber. Dtsch. Chem. Ges. 1907; 40: 3839
    • 89c Haworth RD, Kelly W. J. Chem. Soc. 1936; 745
    • 90a Baddar FG, El-Assal LS. J. Chem. Soc. 1951; 1844
    • 90b Baddar FG, Moussa GE. M, Omar MT. J. Chem. Soc. 1968; 110
    • 90c Cadby PA, Hearn MT. W, Ward AD. Aust. J. Chem. 1973; 26: 557
    • 91a Iwai I, Ide J. Chem. Pharm. Bull. 1964; 12: 1094
    • 91b Bartlett AJ, Laird T, Ollis WD. J. Chem. Soc., Chem. Commun. 1974; 496
    • 91c Bartlett AJ, Laird T, Ollis WD. J. Chem. Soc., Perkin Trans. 1 1975; 1315
    • 91d Garratt PJ, Neoh SB. J. Org. Chem. 1979; 44: 2667
    • 92a Ahmed R, Stevenson R. Org. Prep. Proced. Int. 1975; 72: 79
    • 92b Stevenson R, Weber JV. J. Nat. Prod. 1989; 52: 367
    • 92c Anastas PT, Stevenson R. J. Nat. Prod. 1991; 54: 1687
  • 93 Kudoh T, Shishido A, Ikeda K, Saito S, Ishikawa T. Synlett 2013; 24: 1509
    • 94a Eghbali N, Eddy J, Anastas PT. J. Org. Chem. 2008; 73: 6932
    • 94b Foley P, Eghbali N, Anastas PT. Green Chem. 2010; 12: 888
    • 95a Ambasana PA, Vachhani DD, Galli M, Jacobs J, Meervelt LV, Shahb AK, Van der Eycken EV. Org. Biomol. Chem. 2014; 12: 8861
    • 95b Rodríguez D, Castedo L, Domínguez D, Saá C. Synthesis 2004; 761
  • 96 Li L, Hu Q, Zhou P, Xie H, Zhang X, Zhang H, Wang H, Hu Y. Synthesis 2014; 46: 1547
  • 97 Smela MP, Hoye TR. Org. Lett. 2018; 20: 5502
  • 98 Chukhadzhyan EmO, Gevorgyan HR, Shahkhatuni KG, Chukhadzhyan ElO, Ayrapetyan LV, Khachatryan AA. Russ. J. Org. Chem. 2018; 54: 517
    • 99a Chukhadzhyan EO, Chukhadzhyan ElO, Shakhatuni KG, Babayan AT. Chem. Heterocycl. Compd. 1991; 27: 594
    • 99b Chukhadzhyan EO, Gabrielyan GL, Babayan AP. Zh. Org. Khim. 1978; 14: 2502
    • 99c Chukhajian EO, Ayrapetyan LV, Chukhajian ElO, Panosyan HA. Chem. Heterocycl. Compd. 2006; 42: 1151
    • 99d Chukhajian EO, Gevorgyan HR, Shahkhatuni KG, Chukhajian ElO, Panosyan HA. Russ. J. Org. Chem. 2019; 55: 473
    • 99e Chukhajian EO, Gevorgyan HR, Ayrapetyan LV, Chukhajian ElO, Shahkhatuni KG, Mkrtchyan АS, Panosyan HA. Russ. J. Org. Chem. 2018; 55: 1156
  • 100 Xu W, Wang G, Xie X, Liu Y. Org. Lett. 2018; 20: 3273
  • 101 Martinez-Esperón MF, Rodríguez D, Castedo L, Saá C. Org. Lett. 2005; 7: 2213
    • 102a Rodríguez D, Castedo L, Domínguez D, Saá C. Tetrahedron Lett. 1999; 40: 7701
    • 102b Rodríguez D, Navarro A, Castedo L, Domínguez D, Saá C. Org. Lett. 2000; 2: 1497
    • 103a Rodríguez D, Navarro-Vázquez A, Castedo L, Domínguez D, Saá C. Tetrahedron Lett. 2002; 43: 2717
    • 103b Rodríguez D, Navarro-Vázquez A, Castedo L, Domínguez D, Saá C. J. Org. Chem. 2003; 68: 1938
    • 103c Rodríguez D, Martínez-Esperón MF, Navarro-Vázquez A, Castedo L, Domínguez D, Saá C. J. Org. Chem. 2004; 69: 3842
    • 103d Prall M, Kruger A, Schreiner PR, Hopf H. Chem. Eur. J. 2001; 7: 4386
  • 104 Kawano T, Suehiro M, Ueda I. Chem. Lett. 2006; 35: 58
    • 105a Wessig P, Matthes A, Schilde U, Kelling A. Eur. J. Org. Chem. 2013; 2123
    • 105b Wessig P, Pick C, Schilde U. Tetrahedron Lett. 2011; 52: 4221
  • 106 Kobayashi S, Wakumoto S, Yamaguchi Y, Wakamiya T, Sugimoto K, Matsubara Y, Yoshida Z.-i. Tetrahedron Lett. 2003; 44: 1807
  • 107 Brandi A, Nuti P. Heterocycles 1987; 26: 47
  • 108 He Y, Chen Y, Wu H, Lovely CJ. Org. Lett. 2003; 5: 3623
  • 109 He Y, Krishnamoorthy P, Lima HM, Chen Y, Wu H, Sivappa R, Rasika Dias HV, Lovely CJ. Org. Biomol. Chem. 2011; 9: 2685
  • 110 Urban S, de Almeida Leone P, Carroll AR, Fechner GA, Smith J, Hooper JN. A, Quinn RJ. J. Org. Chem. 1999; 64: 731
  • 111 Sivappa R, Hernandez NM, He Y, Lovely CJ. Org. Lett. 2007; 9: 3861
    • 112a Kinnel RB, Gehrken HP, Scheuer PJ. J. Am. Chem. Soc. 1993; 115: 3376
    • 112b Kinnel RB, Gehrken HP, Swali R, Skoropowski G, Scheuer PJ. J. Org. Chem. 1998; 63: 3281
  • 113 Sivappa R, Mukherjee S, Dias HV. R, Lovely CJ. Org. Biomol. Chem. 2009; 7: 3215
    • 114a Akee R, Carroll TR, Yoshida WY, Scheuer PJ, Stout TJ, Clardy J. J. Org. Chem. 1990; 55: 1944
    • 114b Fu X, Schmitz FJ, Tanner RS, Kelly-Borges M. J. Nat. Prod. 1998; 61: 384
  • 115 Lima HM, Sivappa R, Yousufuddin M, Lovely CJ. Org. Lett. 2012; 14: 2274
    • 116a Tomberg A, Cesco SD, Huot M, Moitessier N. Tetrahedron Lett. 2015; 56: 6852
    • 116b Slauson SR, Premberton R, Ghosh P, Tantillo DJ, Aubé J. J. Org. Chem. 2015; 80: 5260
    • 116c Shen M.-H, Liang X.-C, Li C, Wu H, Qu H.-Y, Wang F.-M. Tetrahedron Lett. 2019; 60: 1025