
THIEME

Review Article 11

Artificial Intelligence in Neuroanesthesiology  
and Neurocritical Care
Vanitha Rajagopalan1,    Dilip K. Kulkarni2

1Department of Neuroanaesthesiology & Critical Care, All India 
Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 
India

2Department of Anaesthesia, Malla Reddy Narayana Multispeciality 
Hospital & Malla Reddy Medical College for Women, Suraram, 
Hyderabad, Telangana, India

Address for correspondence  Dilip K. Kulkarni, MD, Department of 
Anaesthesia, Malla Reddy Narayana Multispeciality Hospital & Malla 
Reddy Medical College for Women, Suraram, Hyderabad 500055, 
Telangana, India (e-mail: dilipkum@gmail.com).

Artificial intelligence (AI) already influences almost every sector of our daily life, includ-
ing the rapidly evolving technologies and datasets of healthcare delivery. The applica-
tions in medicine have significantly evolved over the past few decades and have shown 
promising results. Despite constant efforts to incorporate AI into the field of anes-
thesiology since its inception, it is still not commonplace. Neuroanesthesiology and 
neurocritical care is a discipline of medicine that deals with patients having disorders 
of the nervous system comprising a complex combination of both medical and surgical 
disease conditions. AI can be used for better monitoring, treatment, and outcome pre-
diction, thereby reducing healthcare costs, minimizing delays in patient management, 
and avoiding medical errors. In this review, we have discussed the applications of AI 
and its potential in aiding the clinician’s judgment in several aspects of neuroanes-
thesiology and neurocritical care, some of the barriers to its implementation, and the 
future trends in improving education in this field, all of which will require further work 
to understand its exact scope.
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Introduction
The official introduction of AI occurred during the 1956 
Dartmouth Artificial Intelligence Conference. John McCarthy 
coined the term “artificial intelligence” in 1955, and is one 
of the “founding fathers” of artificial intelligence together 
with Alan Turing, Marvin Minsky, Allen Newell, and Herbert 
A. Simon.1 Since then, there has been widespread implemen-
tation of AI in all sectors including healthcare2,3 AI is defined 
as the development of computer systems to model intelligent 
behavior with minimal human intervention.

The application of AI in medicine has two main branches: 
1) virtual branch and 2) physical branch.

The physical branch comprises highly repetitive work. It 
empowers the doctors to deliver faster and more accurate 
clinical care by offering them expertise and assistance. The 

virtual component is represented by Machine Learning (ML), 
mathematical algorithms that improve learning through 
experience.

Health Data Management
The health data are nowadays available in electronic health 
records (EHRs). The medical data include numerical infor-
mation, laboratory test results, genetic tests, culture results, 
images, treatment information, administrative data, and 
health research information. Clinical data stored in EHR are 
both structured and unstructured4,5 (►Fig. 1).

Structured Data
Structured data follow a prescribed data model and value 
set, constraining the users to only be able to choose 
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predetermined values. Computers can readily process 
structured data. Data sent by medical devices to EHRs are 
usually structured data.

Unstructured Data
Unstructured data do not follow a predefined set of values, 
allowing users to instead enter narrative information about 
data using their own words. This means recording data pro-
vides the user with the most freedom for recording an entry, 
but because the same clinical event could be documented in 
myriad ways, computers cannot easily process unstructured 
data, making errors more likely. These data have to be con-
verted to computer readable data through the natural lan-
guage processing (NLP) methods.5,6

Machine Learning Algorithms
Machine learning (ML) can be classified as follows4,7-9:

1.	 Unsupervised
2.	 Supervised
3.	 Deep learning
4.	 Reinforcement learning

Unsupervised Machine Learning
Unsupervised learning is a ML technique, where the model 
works on its own to discover information and the outcomes 
of the model are not defined.

It performs more complex processing tasks compared 
with supervised learning but becomes unpredictable com-
pared with other ML techniques and is less accurate.

Clustering, association, and principal component analy-
sis (PCA) fall into unsupervised techniques. Clustering finds 
out the structure and pattern in data and identifies different 
groups, whereas association establishes the relationship in 
the datasets from the given database. PCA is mainly used for 
the dimension reduction of data.

Supervised Machine Learning
The input and output variables are provided in a supervised 
learning model. Thus, specified data are used to train algo-
rithms, and a link is established between input and output 
variables in a supervised learning model. These techniques 
are highly precise.

The supervised learning techniques are regression and 
classification. Classification separates the data, whereas 
regression fits the data.

Fig. 1  The cycle of medical data generation through medical health records, NPL to ML to clinical treatment and prediction. ML, machine 
learning; NPL, natural language processing.
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The following algorithms are used in supervised ML tech-
niques: decision tree, random forest (RF), Naïve Bayes (NB), 
support vector machine (SVM), artificial neural networks 
(ANN), discriminant analysis, nearest neighbor, linear regres-
sion, and logistic regression. The SVM and ANN are frequently 
used in the medical field.

Support Vector Machine
This supervised learning algorithm classifies the data into 
two categories. The model is built from the data already 
sorted in two categories (►Fig.  2). This makes SVM a kind 
of nonbinary linear classifier. SVMs are used in text catego-
rization, image classification, prediction, and handwriting 
recognition.

Artificial Neural Network
The neural network captures complex nonlinear relation-
ships between input and outcome variables by multiple hid-
den layers (HLs) with prior specified functions. The weights 
are established through the input and outcome data; thus, 
the average error is reduced and the predictions become 
more accurate (►Fig. 3).

Deep Learning
Deep learning is a self-teaching system in which the exist-
ing data are used to train algorithms to find the patterns 

and then make predictions about new data. The ANNs with 
multiple layers of nodes create deep learning algorithms that 
mimic the network of neurons of the brain. This algorithm 
with multiple cycles defines patterns and improves the pre-
cision of predictions with each cycle (►Fig. 4).

Reinforcement Learning
Like deep learning, reinforcement learning is autonomous. 
But deep learning is learning from a training set and then 
applying that learning to a new dataset, while reinforcement 
learning is dynamically learning by adjusting actions, based 
on continuous feedback, to maximize a reward.3,6-8

Neuroanesthesiology and neurocritical care as a disci-
pline is rendered difficult due to the inherent limitations in 
the assessment of patients with neurological injury. As neu-
roanesthesiologists, we work in operating rooms and inten-
sive care units (ICUs), both being acute care settings, which 
demand vigilance, steady hands, and quick thinking.

AI can definitely assist us in making better clinical deci-
sions and provide up-to-date medical information from 
journals, textbooks, and clinical practices. This results in 
early diagnosis, predicts outcome of the disease as well as 
treatment, provides feedback on treatment, and reduces 
errors. This greatly increases patient safety and saves costs. 
These traits allow AI systems to continuously monitor and 
treat neurocritical care patients in real-time. Early signs of 

Fig. 2  Depiction of SVM classifying the data into two categories and data reduction by PCA. PCA, principal component analysis; SVM, super-
vised learning algorithm.
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neurological deterioration could be detected more promptly 
and appropriate measures taken more quickly, thereby 
improving patient outcomes. AI can also help patients in 
areas where neurocritical care is not available,10 as they 
take over more of the basic patient management, by analyz-
ing the data and titrating treatments in real-time, reducing 

possible delays in patient care and optimizing the patient’s 
condition till he/she is transferred to a higher center with 
neurocritical care facility.

In this review, we have discussed the applications of AI in 
neuroanesthesiology and neurocritical care, the barriers to 
its implementation, and the future trends in this field.

Fig. 3  A diagram representing ANN, showing the outcome of head injury; the input variables are sex (M–male, F–female), age, RR, GCS, 
extracranial injuries, CT scan of the midline shift, and whether surgery was performed in binary fashion. The HL is only one. ANN, artificial 
neural network; CT, computed tomography; GCS, Glasgow coma scale; HL, hidden layer; RR, respiratory rate.

Fig. 4  Depiction of deep learning of ANN with the following input variables: sex (M–male, F–female), age, RR, GCS, extracranial injuries, CT 
scan of the midline shift, and whether surgery was performed in the binary fashion with three hidden layers of nodes and the head injury out-
come. ANN, artificial neural network; CT, computed tomography; GCS, Glasgow coma scale; HL, hidden layer; RR, respiratory rate.
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Applications in Neuroanesthesiology and 
Neurocritical Care
AI creates a potential system to manage the neuroanesthesiol-
ogy and neurocritical care patient with minimal or no super-
vision, freeing the clinician to focus attention elsewhere.11-13 
Some potential parameters include anesthetics/analgesics, 
antiepileptic drugs (AEDs), blood pressure, glucose, fluids/
electrolytes, neuromuscular blockade, and ventilator set-
tings.14-25 The applications of AI in our field can be broadly dis-
cussed under five categories (1) predictive analytics, (2) imag-
ing, (3) smart devices, (4) Administration, and (5) research and 
education.

Predictive Analytics
Much of the work in critical care using AI has focused on pre-
dictive analytics. Improvement in the prediction of adverse 
events such as hypotension has been shown using advanced 
ML models in critical care environments.26 ML methods can 
predict the risk of postinduction hypotension.27,28 These mod-
els enables detection and intervention up to 15 minutes before 
an event and have been generalized for use in the multicenter 
clinical environment.29 Predictive therapeutic interventions to 
prevent hypotension using AI have also been constructed for 
fluid resuscitation.30 By combining models for early hypoten-
sion detection and therapeutic intervention, there is potential 
to prevent or minimize patient deterioration and the subse-
quent development of multisystem organ dysfunction.

Sepsis remains one of the largest causes of mortality in 
the ICU. Sepsis algorithms become more important and these 
interpretable models can predict sepsis 4 to 12 hours before 
clinical recognition.31

ML models can also help in the prediction of  
hospital-acquired infections such as central line-associated 
blood stream infection and Clostridium difficile infections.32

Prediction of prolonged mechanical ventilation is useful 
for early tracheostomy, ventilator weaning, and rehabilita-
tion. Use of AI to identify patients who will require > 7 days 
of mechanical ventilation has been shown to improve  
outcomes.33 Teams are also using AI to aid ventilator weaning 
by targeting the success of extubation. Kuo et al34 used neu-
ral networks to create a model with an accuracy of 80% and 
improved on traditional prediction by rapid shallow breath-
ing index.

AI has also been implemented in specialized ICUs such as 
in neurointensive care for early and accurate risk assessment 
of seizures in critically ill patients.35

Predictive ML models for patient trajectories36 and ICU 
readmission have been developed and have shown higher 
predictive values than the conventionally used stability and 
workload index for transfer score or the modified early warn-
ing score criteria for early deterioration.37

Mortality is a common outcome in medical studies, 
and prediction capabilities related to it have been studied 
extensively using ML and NLP. Use of NLP enables inclusion 
of the traditionally difficult-to-use clinical notes. Weiss-
man et al38 showed the ability to use unstructured data 
such as clinical notes, and terms such as “poor prognosis,” 

by using various NLP techniques. Using neural networks, 
classification algorithms can be constructed for identi-
fication of the most important terms in physician notes, 
which then can be used to construct ML models to pre-
dict outcomes such as mortality in the surgical ICU.39 One 
such model, called Early Mortality Prediction for Inten-
sive Care Unit patients, has been shown to outperform 
traditional scoring systems such as acute physiology and 
chronic health evaluation (APACHE) and sequential organ 
failure assessment (SOFA) despite missing values within 
the training datasets. The area under the curve (AUC) is 
0.82 ± 0.04 compared with the traditional scoring systems 
which range from 0.54 to 0.65.40 This model has not only 
focused on prediction accuracy, but has also attempted 
to generate earlier prediction by hours using multimodal 
data. The benefits of such models once again lie in triage, 
early intervention, and appropriate treatment recommen-
dation to minimize risk to the patient and provide for 
cost-effective care.

Harnessing meaningful information from EHR data and 
data registries is expensive, can be of limited value, and is 
utilized primarily for retrospective research analysis. As we 
have seen from the above examples, ML provides a more 
cost-effective way to carry out retrospective research and, 
in constructing models, can provide real-time or prospective 
guidance to clinicians.41

Machine-learning models have been developed for pre-
dicting mortality following trauma in motorcycle riders. 
ANNs have been used to predict outcome following head 
injury.42,43

The occurrence of symptomatic cerebral vasospasm (SCV) 
after aneurysmal subarachnoid hemorrhage (aSAH) is a mor-
bid and common problem. A simple ANN model was found to 
be more sensitive and specific than multiple logistic regres-
sion (MLR) models in prediction of SCV in patients with 
aSAH.44 ML has been used to predict outcome in intracranial 
aneurysms treated with flow diverters.45

Hollon et al46 sought to build a predictive model using 
supervised ML to accurately predict early outcomes of pitu-
itary adenoma surgery. These results provide insight into 
how predictive modeling using ML can be used to improve the 
perioperative management of pituitary adenoma patients.

Stroke is one of the major causes of disability and death 
worldwide. It is estimated that up to 80% of strokes can be 
prevented if one can identify or predict the occurrence of 
stroke in its early stage.47 AI-based methods offer several 
advantages in improving prediction performance for stroke 
treatment, prognosis, and functional outcome prediction. 
This helps neurophysicians to identify high-risk patients and 
guide treatment approaches, leading to decreased morbidity. 
Several AI-based techniques are being investigated to develop 
automated platforms for precisely predicting prognosis and 
the functional outcome. Park et al48 have proposed a Bayes-
ian network model for the prediction of poststroke outcomes 
with the available risk factors. They also introduced an online 
“Yonsei stroke outcome inference system” for predicting func-
tional independence at 3 months and mortality within 1 year 
in patients with stroke using the Bayesian network model.
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The timely diagnosis of stroke is crucial for good functional 
recovery and minimizing mortality. AI offers technology 
solutions with high-precision and accuracy for the diagno-
sis of stroke, its severity, as well as prediction of functional 
outcomes.49

Recently, in diagnostic neuroradiology, there has been an 
interest in adopting AI and ML techniques50,51 and in the pre-
diction of the outcome in patients postneurointerventional 
procedures.52,53 Two recent studies52,53 have used ANN mod-
eling and supported vector machine algorithms in predic-
tion of the final Modified Rankin Score (mRS) with relatively 
good accuracy and precision. The accuracy of outcome pre-
diction, using supervised ML algorithms has shown promis-
ing results, especially in the prediction of final outcome as 
good or bad as well as the probability of requiring retreat-
ment in future, with the potential for incorporation of larger 
multicenter datasets, which will further improve predictive 
accuracy.54

Imaging
Point-of-care ultrasound for assessment of cardiac func-
tion, volume status, and vasopressor/inotrope management 
has witnessed increasing utilization in care of critically ill 
patients. Deep learning models have been developed that can 
enable fast and accurate classification of cardiac anatomy on 
echocardiograms.55 Innovations such as these are likely to 
propel clinicians into a newer era of enhanced integration of 
various imaging techniques to generate more accurate diag-
nosis and treatment methods. Automated analysis of medical 
imaging is a prominent area in ML applications. ML models 
have been implemented in the reading of radiographic imag-
es, including X-rays and computed tomographic scans, and 
have reported increasing accuracy for clinical diagnosis.56

Within the ICU, models have been developed to pro-
vide surveillance for lines and tubes to assess proper device  
positioning.57 In addition, waveform analysis from ventilator 
data has been used to create models to detect patient–ventilator 
asynchrony that match clinical experts.58 Thus far, the primary 
use of ML waveform analysis has been to either automatically 
screen waveforms such as electrocardiograms and electroen-
cephalographs, which cannot be monitored constantly by cli-
nicians. The goal of these models is to improve time to early 
intervention.59,60 The tools developed for waveform detection 
could also be used to reduce the burden of alarms plaguing 
ICUs. One of the Joint Commission International goals is to 
reduce alarm fatigue among care providers, which can con-
ceivably be achieved using modern AI techniques.61

Smart Devices
Medication delivery and titration is a key component of 
patient care in the ICU and requires a large amount of clinical 
resources. Smart pumps exist for medication titration, and 
these devices can be further utilized for their abilities to pro-
vide closed loop management. In future, increased utilization 
of closed loop infusions will hopefully decrease manual labor 
while possibly enhancing consistency in steady-state drug 
delivery. Models using unsupervised learning have been tri-
aled for clinical applications, including use in vasopressor 

drug delivery in the ICU.62 Similarly, for tight glycemic con-
trol, AI-based artificial pancreas systems have been devel-
oped for use in the ICU.63

Administration
Triage from emergency departments is a complicated task 
and includes identification of high-risk patients who need to 
be promptly admitted to the ICU. AI models have been devel-
oped that can help triage trauma patients, thereby leading 
to appropriate and timely resource utilization.64,65 Similar-
ly, identification of cohorts of patients with similar clinical 
needs has been postulated to provide a framework for future 
organizational innovations in the ICU and provide better 
cost-effective care.66

Research and Education
Considerable research has been generated in all areas of AI. AI 
in medical education is still in its infancy. In the future, it is 
likely that basic understanding of AI and its applications will 
be required in clinical practice and thus will be part of educa-
tional curricula to facilitate better understanding, interpreta-
tion, and implementation.

Anesthesiologists and intensivists work at the junction of 
many disciplines: surgery, medicine, biology, pharmacology, 
mathematics, and physics, and are well-placed to embrace 
modeling. They have access to knowledge and expertise of 
enormous breadth and have experience of a huge array of 
induced and pathological states, and are comfortable with 
biological science, physical science, numbers, technology, 
and medicine. Anesthesiologists and intensivists, above all, 
have clinical contact, a real understanding of real-world 
relevancy and empathy for the issues of importance. In 
addition, they have skills in managing teams of individuals, 
collaborating and coordinating their efforts toward a single 
goal. All that is required of the researcher who wants to use 
modeling is to get an idea of what may be achieved and find 
a suitable question to answer. Contact with an expert will 
be enormously helpful during the researcher’s early forays 
into AI.

Limitations and Future Trends
AI technologies have great potential for assisting future neu-
roanesthesiologists and neurocritical care physicians. How-
ever, significant hurdles remain before they can be used 
routinely in the operating room and ICU. One of the most 
significant challenges is creating adequate regulatory mech-
anisms to ensure the patients under the care of AI are safe 
and protected. When an AI independently decides to inter-
vene on a patient and causes an adverse event, who is then 
held accountable? Furthermore, patient autonomy might 
be challenged because the AI system can administer care in 
an automated fashion without involving the patient in the  
decision-making process. The patient–doctor relationship 
can become more “distant,” as these AI systems take over 
more of the basic patient management. As this technolo-
gy becomes more widespread, these challenges need to be 
addressed before AI can play any role in patient care.
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Conclusions
As a specialty, neuroanesthesia and critical care should con-
tinue to create and refine real-time evidence-based, individ-
ualized, clinical decision supportive tools and guidelines. One 
of the future clinician’s greatest challenges will be validating 
the safety and efficacy of these systems. The revolution in 
AI is so much that there may be a risk of technological col-
lusions such as cloud and edge computing to even surpass 
human intelligence in the years to come. The challenge for 
healthcare professionals, in particular, is the willingness to 
accept technology and the transformation that is inevitable. 
Effective clinical governance to ensure patient safety is vital 
for digital health.
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