Diagnostic Challenges in Newborns and Infants with Coagulation Disorders

Wolfgang Eberl

1 Department of Pediatrics, Städtisches Klinikum Braunschweig, Braunschweig, Germany

Address for correspondence Wolfgang Eberl, Department of Pediatrics, Städtisches Klinikum Braunschweig, Holwedestr. 16, 38118 Braunschweig, Germany (e-mail: w.eberl@klinikum-braunschweig.de).

Introduction

The clinical problems that today lead to presentation of patients in an outpatient coagulation clinic vary greatly from age group to age group. In recent years, the main focus in adults has been on clarifying their tendency toward thrombosis, monitoring anticoagulation, and clarifying their tendency toward bleeding. In childhood and adolescence, perioperative coagulation diagnostics and the assessment of an increased bleeding tendency are the most common indication. In recent years, there is also increasing demand in the field of neonatology and intensive care diagnostics especially for catheter-related complications or sepsis-related coagulation disorders. Standard routine parameters are not suitable.1 A premature infant weighing of 1,000 g has an intravascular volume of 100 mL; a newborn infant, approximately 250 mL. This means that the sampling of a standard 5-mL vial represents 2 or 5% of the total blood volume. The first challenge is therefore to limit diagnostics to the bare essentials. Routine screening diagnostics or the creation of “profiles” are therefore obsolete. For instance, in the case of a familial predisposition, there is no indication for a thrombophilia diagnosis in prepubescent children who are not clinically affected by vascular occlusion with the exception of determination of antithrombin III or protein C in families with severe defects. The routine preoperative coagulation diagnostics in infants can almost always be replaced by taking a systematically collected medical history.2 The most important criterion for selecting the particular parameters to be investigated is whether the result has a therapeutic consequence. The ideal diagnostic procedure should be based on the leading symptom with a clear target orientation. – Tables 1 to 3 provide suggestions for frequently asked questions.

Preanalytical Problems

An abundance of possible disruptive factors and sources of error in coagulation diagnostics has long been identified and led to the well-known recommendations for sample
Technical aspects have a completely different significance in the training of a pediatrician than in other medical staff; it often takes months to years until venipuncture for blood collection is safely mastered, especially in premature and new-born babies. This means that hemolytic samples, underfilled tubes or clotted samples, and even clot formation are rather frequent during blood collection in the coagulation laboratory of a pediatric clinic. The initial quality control by the technical staff and taking notes of the diagnostic limitations are therefore essential for the later interpretation of the results. In a neonatal intensive care unit, hematocrit values between 30 and 70% are not uncommon. This can compromise the measured results; since the plasma:citrate ratio varies from 6.3:1 to 2.7:1 with depending on a corresponding “dilution effect.” However, this also implies that underfilled and overfilled samples can still be examined depending on the hematocrit value. For this purpose, we have developed a tool that allows the technician to assess whether the sample can be measured based on a known hematocrit value (►Fig. 1).

Analytics

In almost all clinics, coagulation diagnostics are performed in central laboratories in which samples of children are practically quantitatively negligible. The selection of devices, tests, and reagents will therefore rarely take into account the specificity of the pediatric needs. However, there are differences in the systems available on the market, especially with regard to the required sample volume. In principle, no major difference needs to be considered when selecting test systems except in the case of derived fibrinogen, which is not suitable for newborns or infants because of poor and inconsistent correlation between prothrombin time-derived fibrinogen determination and the Clauss method. Icteric and lipemic plasma disturb the PTZ-derived fibrinogen determination. An ideal investigation would be a global test that would provide as much information as possible with as little starting material as possible. Unfortunately, the otherwise

Table 1 Stepwise diagnostic work-up of acute bleeding event

<table>
<thead>
<tr>
<th>Preterm/newborn</th>
<th>Acute bleeding event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hereditary coagulopathy</td>
<td>Acquired coagulopathy</td>
</tr>
<tr>
<td>von Willebrand disease</td>
<td>Thrombocytopenia</td>
</tr>
<tr>
<td>Hemophilia A/B</td>
<td>Vitamin K deficiency</td>
</tr>
<tr>
<td>Other factor deficiencies</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td></td>
</tr>
<tr>
<td>Platelet function defects</td>
<td>Blood count, PT, aPTT, fibrinogen, F XIII, vWF:Ag</td>
</tr>
<tr>
<td>Level 1</td>
<td>Single factors depending on PT/aPTT constellation</td>
</tr>
<tr>
<td>Level 2</td>
<td>Platelet function analysis (aggregometry)</td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
</tr>
</tbody>
</table>

Therapeutic implications

- Vitamin K substitution, platelet transfusion, FFP, or single factor infusion

Table 2 Stepwise diagnostic work-up of neonatal thrombosis or stroke

<table>
<thead>
<tr>
<th>Preterm/newborn</th>
<th>Thrombosis, stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hereditary coagulopathy</td>
<td>Acquired coagulopathy</td>
</tr>
<tr>
<td>Protein C/S deficiency</td>
<td>Polyglobulia</td>
</tr>
<tr>
<td>Antithrombin III deficiency</td>
<td>Sepsis/DIC</td>
</tr>
<tr>
<td>Other thrombophilic states</td>
<td>Central line associated</td>
</tr>
<tr>
<td>TTP when additional hemolysis</td>
<td>Blood count, PT, aPTT, D-dimer, antithrombin III, protein C</td>
</tr>
<tr>
<td>Level 1</td>
<td>Single factors depending on PT/aPTT constellation</td>
</tr>
<tr>
<td>Level 2</td>
<td>ADAMTS13 activity when hemolysis is present</td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
</tr>
</tbody>
</table>

Therapeutic implications

- Monitoring of anticoagulation, substitution of protein C/antithrombin III

Table 3 Diagnostic work-up of bleeding symptoms or acute event (infants)

<table>
<thead>
<tr>
<th>Infant</th>
<th>Unusual bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hereditary coagulopathy</td>
<td>Acquired coagulopathy</td>
</tr>
<tr>
<td>von Willebrand disease</td>
<td>Thrombocytopenia</td>
</tr>
<tr>
<td>Hemophilia A/B</td>
<td>Vitamin K deficiency</td>
</tr>
<tr>
<td>Other factor deficiencies</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td></td>
</tr>
<tr>
<td>Platelet function defects</td>
<td>Blood count, PT, aPTT, fibrinogen, F XIII, vWF:Ag/ activity</td>
</tr>
<tr>
<td>Level 1</td>
<td>Single factors depending on PT/aPTT constellation</td>
</tr>
<tr>
<td>Level 2</td>
<td>Differential diagnosis of thrombocytopenia (blood smear)</td>
</tr>
<tr>
<td>Level 3</td>
<td>Platelet function analysis (aggregometry/flow cytometry)</td>
</tr>
</tbody>
</table>

Therapeutic implications and diagnostic consequences

- Vitamin K supplementation, factor substitution
- Treatment of thrombocytopenia depending on diagnosis

Abbreviations: aPTT, activated thromboplastin time; PT, prothrombin time; DIC, disseminated intravascular coagulation; FFP, fresh frozen plasma; PT, prothrombin time.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
useful prothrombin time and activated thromboplastin time in childhood are not suitable for preoperative diagnostics, for a reliable diagnosis or for the exclusion of a factor deficiency, because false-positive and false-negative test results are frequent. In addition, the hope that thrombelastography would be able to remedy this problem has not completely fulfilled, but actually some promising studies in neonatal intensive care units were done. Similarly, the “in vitro bleeding time” (PFA-100 or similar devices) could not be established as a screening method in childhood and adolescence since relevant preanalytical implications, and as well as poor sensitivity and specificity for individual problems limit the diagnostic statement power in pediatrics. Platelet function diagnostics, which are fortunately only rarely necessary, require relatively large sample quantities using traditional aggregometry methods and can pose considerable problems. By using flow cytometry with relatively small sample quantities, at least some of the more frequent thrombocytopathies (i.e., Glanzmann thrombasthenia, Bernard–Soulier syndrome, or storage pool disease) can be excluded.

Interpretation of Findings

However, the greatest challenge in diagnostics in this age group is evaluating interpreting the test results obtained. The coagulation system of premature babies, newborns, and infants in the first year of life is subject to a maturation dynamic that requires a differentiated knowledge of age-related reference values. The first publication of such data by Maureen Andrew was a milestone. Several current publications on this topic have appeared in recent years. These also take into account the fact that the technical development from early mechanical detection methods to light-optical methods and above all the development of new parameters now require a more differentiated examination interpretation of the findings. In many publications, it is recommended to establish laboratory reference values that refer to the local conditions of the equipment and the selection of the reagents. However, this requirement quickly would breach ethical limits necessitating the examination of healthy premature and newborns as well as infants. As a rule, it is best to use published reference values that have been created using a similar methodology. However, it is crucial that the connections between the clinical symptoms and, if necessary, the dynamics of the clinical disease course are closely correlated with the laboratory findings. Therefore the clinician and the laboratory manager should maintain a close communication with each other. At this point, it should be mentioned once again that personal and family medical histories can often provide valuable information.

Summary

In newborns and infants, the diagnosis of coagulation disorders (from the indication to the interpretation of the findings) differs in many ways from that of older children or adults. Ideally, a pediatric hemostaseologist can discuss the selection of equipment and test systems in the central laboratory. The interpretation of the findings in intensive care units and in surgery also requires expertise that takes into account the specific characteristics of each age group. In a large hospital, the proportion of coagulation tests for newborns, premature babies, and infants represents only a negligible proportion part of the total workflow volume of a
in the laboratory. Therefore, constant contact between the
clinician and the laboratory is mandatory to ensure a high
level of quality.

Conflict of Interest
None.

References
1 PaI S, Curley A, Stanworth SJ. Interpretation of clotting tests in the
neonate. Arch Dis Child Fetal Neonatal Ed 2015;100(03):
F270–F274
2 Bidlingmaier C, Eberl W, Knöfler R, Oliveri M, Kurnik K. Haemo-
3 Lippi G, Salvagno GL, Montagnana M, Lima-Oliveira G, Guidi GC,
Favaloro EJ. Quality standards for sample collection in coagulation
4 Adcock Funk DM, Lippi G, Favaloro EJ. Quality standards for
sample processing, transportation, and storage in hemostasis
GC. Quality and reliability of routine coagulation testing: can we trust that sample? Blood Coagul Fibrinolysis 2006;17(07):
513–519
6 Nagler M, Kathriner S, Bachmann LM, Wuuilemin WA. Impact of
changes in haematocrit level and platelet count on thromboelas-
7 van den Besselaar AM, Witteveen E, van der Meer FJ. Influence of
haematocrit on international normalised ratio (INR) differences
between a whole blood point-of-care coagulation monitor and
100(06):1181–1184
8 Blombäck M, Konkle BA, Manco-Johnson MJ, Bremke K, Hellgren
M, Kaaja R; ISTH SSC Subcommittee on Women’s Health Issues.
Preanalytical conditions that affect coagulation testing, including
855–858
9 Carter BG, Carlend E, Monagle P, Horton SB, Butt W. Impact of
thromboelastography in paediatric intensive care. Anaesth Inten-
sive Care 2017;45(05):589–599
10 Mirabella L, Cotoia A, Colacico G, et al. Reference values for
couagulation assessment in full-term newborns. Minerva Aneste-
siolo 2017;83(04):369–374
11 Sokou R, Konstantinidi A, Stefanaki C, et al. Thromboelastom-
etry: studying hemostatic profile in small for gestational age
neonates—a pilot observational study. Eur J Pediatr 2019;178
(04):551–557
12 Sokou R, Giallouros G, Konstantinidi A, et al. Thromboelastom-
etry for diagnosis of neonatal sepsis-associated coagulopathy: an
13 Hayward CP, Harrison P, Cattaneo M, Ortet TL, Rao AK; Platelet
Physiology Subcommittee of the Scientific and Standardization
Committee of the International Society on Thrombosis and Haemo-
stasis. Platelet function analyzer (PFA)-100 closure time in the
evaluation of platelet disorders and platelet function. J Thromb
Haemost 2006;4(02):312–319
14 Pedda GM, Bucciarelli P, Lussana F, Lecchi A, Cattaneo M. Usefulness
of PFA–100 testing in the diagnostic screening of patients with
suspected abnormalities of hemostasis: comparison with the
15 Roschitz B, Thaller S, Koestenberger M, et al. PFA-100 closure
times in preoperative screening in 500 pediatric patients. Thromb
16 Andrew M, Vegg P, Johnston M, Bowker J, Olufo S, Mitchell L.
Maturation of the hemostatic system during childhood. Blood
17 Male C, Johnston M, Sparkling C, Brooker L, Andrew M, Massicotte
P. The influence of developmental haemostasis on the laboratory
diagnosis and management of haemostatic disorders during
18 Kuhlle S, Male C, Mitchell L. Developmental hemostasis: pro- and
anticoagulant systems during childhood. Semin Thromb Hemost
2003;29(04):329–338
19 Monagle P, Ignjatovic V, Savoia H. Hemostasis in neonates and
20 Jaffray J, Young G. Developmental hemostasis: clinical implica-
tions from the fetus to the adolescent. Pediatr Clin North Am
2013;60(06):1407–1417
21 Toulon P. Developmental hemostasis: laboratory and clinical
22 Attard C, van der Straaten T, Karlafits V, Monagle P, Ignjatovic V.
Developmental hemostasis: age-specific differences in the levels
23 Toulon P, Berruyer M, Brionne-François M, et al. Age dependency
for coagulation parameters in paediatric populations. Results of a
multicentre study aimed at defining the age-specific reference
24 Lippi G, Franchini M, Montagnana M, Guidi GC. Coagulation
testing in pediatric patients: the young are not just miniature
25 Appel JM, Grimminck B, Geerts J, Stigter R, Cnossen MH, Beishui-
zer, J, van Doorn R. The influence of developmental haemostasis on
the laboratory evaluation of platelet disorders and platelet function.
J Thromb Haemost 2012;10:2254–2263
26 Christensen RD, Baer V, Lambert DK, Henry E, Istrup SJ, Bennett
ST. Reference intervals for common coagulation tests of preterm
infants (CME). Transfus 2014;54(03):627–632, quiz 626