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Abstract Background Machine learning models that are used for predicting clinical outcomes
can be made more useful by augmenting predictions with simple and reliable patient-
specific explanations for each prediction.
Objectives This article evaluates the quality of explanations of predictions using
physician reviewers. The predictions are obtained from a machine learning model that
is developed to predict dire outcomes (severe complications including death) in
patients with community acquired pneumonia (CAP).
Methods Using a dataset of patients diagnosed with CAP, we developed a predictive
model to predict dire outcomes. On a set of 40 patients, who were predicted to be
either at very high risk or at very low risk of developing a dire outcome, we applied an
explanation method to generate patient-specific explanations. Three physician
reviewers independently evaluated each explanatory feature in the context of the
patient’s data and were instructed to disagree with a feature if they did not agree with
the magnitude of support, the direction of support (supportive versus contradictory),
or both.
Results The model used for generating predictions achieved a F1 score of 0.43 and
area under the receiver operating characteristic curve (AUROC) of 0.84 (95% confi-
dence interval [CI]: 0.81–0.87). Interreviewer agreement between two reviewers was
strong (Cohen’s kappa coefficient¼0.87) and fair to moderate between the third
reviewer and others (Cohen’s kappa coefficient¼0.49 and 0.33). Agreement rates
between reviewers and generated explanations—defined as the proportion of explana-
tory features with which majority of reviewers agreed—were 0.78 for actual explana-
tions and 0.52 for fabricated explanations, and the difference between the two
agreement rates was statistically significant (Chi-square¼19.76, p-value<0.01).
Conclusion There was good agreement among physician reviewers on patient-
specific explanations that were generated to augment predictions of clinical outcomes.
Such explanations can be useful in interpreting predictions of clinical outcomes.
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Background and Significance

Sophisticated predictive models are increasingly being de-
veloped using machine learning methods to predict clinical
outcomes, such as mortality, morbidity, and adverse
events.1–9 These models, in most cases, are viewed as black
boxes that produce a prediction for an outcome from the
features of a patient case.† However, for such models to be
practically useful in clinical care, it is critical to provide clear
and reliable individual-specific explanations for each predic-
tion.10 While a prediction provides an estimate of the likely
outcome in the future, an explanation provides insight into
features that may be useful in clinical decision-making.
Moreover, explanations will enable physicians to engender
trust in the predictions, interpret them in the clinical con-
text, and help make optimal clinical decisions.11 In the
clinical context, features that are supportive of a prediction
provide potentially actionable aspects that may change the
predicted outcome.12,13

In the context of predictive models, a subtle but impor-
tant distinction exists between model explanation and
prediction explanation. Model explanation provides an
interpretation of the model to the user in terms of structure
and parameters, and is useful in the context of making
discoveries.12,14 Some predictive models, such as decision
trees, linear regression, and rule-based models, are more
easily interpretable, though often such models have poorer
predictive performance than more abstract models, such as
random forests, support vector machines, and neural net-
works.12,14 In contrast to model explanation, prediction
explanation provides an interpretation of the prediction
for an individual to whom a model is applied, and will
potentially be different from individual to individual.15,16

Useful prediction explanations possess two properties.
First, an explanation uses concepts that are understandable
to the user, such as clinical variables that are not modified
or transformed. Second, the explanation is parsimonious, so
that it is readily and rapidly grasped by the user. Prediction
explanations may be based on the structure and parameters
of the model that yielded the prediction (hence, model
dependent) or may be based on an independent method
that is applied after the predictive model has been devel-
oped (hence, model independent).14,17

Novel methods have been developed for prediction expla-
nations and such methods have been applied in biomedicine
and other domains. ►Table 1 provides a summary of studies
that have developed methods for prediction explanations,
with a brief description of each explanation method.

Only a small number of the methods that are listed in
►Table 1 have been applied to predicting clinical outcomes.
For example, Luo applied their method to type-2 diabetes
risk prediction18, Štrumbelj et al developed and applied their
method to breast cancer recurrence predictions,19 and

Reggia and Perricone developed explanations for predictions
of the type of stroke.11Morewidespread application of these
methods to clinical predictions can provide evidence of
applicability and utility of these methods to clinical users.

In this study, we apply and evaluate a recently developed
prediction explanation method called Local Interpretable
Model-Agnostic Explanations (LIME)15 for clinical predic-
tions. The developers of LIME demonstrated that human
evaluators found explanations generated by LIME to be
more reasonable when compared with the explanations
generated by alternative methods. To our knowledge, LIME
has not been extensively evaluated in the context of clinical
predictive models.

Objectives

Our goal was to evaluate patient-specific explanations for
clinical predictions. The aims of our study were to (1)
Develop machine learning models to predict dire outcomes
(severe complications including death) from readily avail-
able clinical data in patients who present with community
acquired pneumonia (CAP), followed by application of a
model-independent prediction explanation method to gen-
erate patient-specific explanations; and (2) Evaluate the
agreement among physicians for explanations generated
for CAP patients who were predicted to be either at very
high risk or at very low risk of developing a dire outcome.

Methods

In this section, we briefly describe the pneumonia dataset
that we used in the experiments, the methods for develop-
ment and evaluation of predictive models, the generation of
patient-specific explanations, and the measures we used to
evaluate agreement among physician reviewers for the
explanations. The implementation of themethods is publicly
available at: https://github.com/Amin-Tajgardoon/explana-
tion-project.

Description of Dataset
The pneumonia data were collected by the Pneumonia
Patient Outcomes Research Team (PORT)20 during Octo-
ber 1991 to March 1994 at five hospitals in three geographi-
cal locations including Pittsburgh, Boston, and Halifax, Nova
Scotia. The PORT data from Pittsburgh that we used in the
experiments had 2,287 patients diagnosed with CAP who
were either hospitalized or seen in ambulatory care. Avariety
of clinical datawere collected at the time of presentation and
several outcomes at 30 days were assessed. A key goal of the
PORTproject was to develop accurate criteria for prognosis of
patients with pneumonia that could provide guidance on
which patients should be hospitalized and which patients
might be safely treated at home.

The PORT dataset contains more than 150 variables
including demographic information history and physical
examination information, laboratory results, and chest X-
ray findings. From the 150 variables, we selected 41 clinical
variables that are typically available in the emergency

† We distinguish between a variable and a feature. A variable
describes an aspect of an individual. A feature is the specification
of a variable and its value. For example, “fever” is a variable and
“fever¼ yes” is a feature.
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department at the time the decisionwhether to admit or not
is made. Of the 41 variables, 17 are discrete and the remain-
ing 24 are continuous. The 24 continuous variables were
discretized based on thresholds provided by clinical experts
on the PORT project.20 A list of the 41 variables with
descriptions is provided in ►Table 2.

The outcome variable we used as the target variable is
called dire outcome and is binary. A patient was considered
to have had a dire outcome if any of the following events
occurred: (1) death within 30 days of presentation; (2) an
intensive care unit admission for respiratory failure, respira-
tory or cardiac arrest, or shock; or (3) one or more specific,

Table 1 Studies that describe methods for prediction explanation

Author (year) Title Description of method

Lundberg and Lee (2017) A unified approach to interpreting model
predictions30

Presents a unified framework for six predic-
tion explanation methods. Also, proposes a
new explanation method that outperforms
prior methods in terms of computational
complexity and reliability.

Krause et al (2016) Interacting with predictions: visual in-
spection of black-box machine learning
models31

Describes an interactive environment that
enables the user to inspect a model’s pre-
diction by tweaking feature values and ob-
serving the effect on the model’s behavior.

Luo (2016) Automatically explaining machine learn-
ing prediction results: a demonstration
on type 2 diabetes risk prediction18

Develops a rule-based model to explain the
decision made by the prediction model.

Ribeiro et al (2016) “Why should I trust you?”: Explaining the
predictions of any classifier15

Proposes a post-hoc explanation method that
generates data samples that are similar to the
predicted sample, labels the samples by the
predictive model, and fits a local linear model
to the samples. Uses the weights in the local
model to identify the influential features.

Baehrens et al (2009) How to explain individual classification
decisions32

Proposes a prediction explanation method
that uses the gradient vector of the predictive
model at the point of the predicted sample
for measuring feature importance.

Sikonja and Kononenko (2008) Explaining classifications for individual
instances33

Explains a sample by assigning an importance
factor to each sample’s feature. The impor-
tance factor of a feature is defined as the
change in the model’s prediction on removal
of the feature from the sample.

Štrumbelj and Kononenko (2008) Toward a model independent method for
explaining classification for individual
instances34

Describes a model-independent explanation
method for probabilistic classifiers. Calcu-
lates an importance weight for each feature
by measuring the change in the class proba-
bility on removal of the feature from the
conditional probability of the class given the
sample features.

Lemaire et al (2008) Contact personalization using a score
understanding method35

Computes the influence of a feature by
measuring the effect of changing the fea-
ture’s value on the model’s prediction.

Poulin et al (2006) Visual explanation of evidence in additive
classifiers36

Describes a framework to visualize each fea-
ture’s contribution to a prediction. Provides
the capability to analyze the effect of
changing feature values on a classifier’s de-
cision. The method is applicable to additive
models such as naïve Bayes, and support
vector machines.

Szafron et al (2003) Explaining naïve Bayes classifications37 Provides a graphical explanation framework
for naïve Bayes predictions. For a sample, the
framework visualizes each feature’s contri-
bution to the decision made by the classifier.

Reggia and Perricone (1985) Answer justification in medical decision
support systems based on Bayesian
classification11

Proposes an explanation method for Bayesian
classifiers by using prior and likelihood values
to determine important features responsible
for the posterior probability of the outcome.
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Table 2 list of variables in the pneumonia PORT study that were used in the present study

Domain Variable Description

Demographics Age (Discrete) [1–6]
Range was [18–105]

Sex Female/male

Race White/non-white

Ethnicity Hispanic/non-Hispanic

Smoking status Yes/no

Past history Number of prior episodes of pneumonia [0–2]

Comorbidities Congestive heart failure Yes/no

Cerebrovascular disease Yes/no

Liver disease Yes/no

Cancer Yes/no

Symptoms Cough Yes/no

Fever Yes/no

Sweating Yes/no

Headache Yes/no

Physical exam Confusion Yes/no

Lungs status Clear/congested

Vitals HR (heart rate) (Discrete) [1–3]

BP systolic (systolic blood pressure) (Discrete) [1–3]

BP diastolic (diastolic blood pressure) (Discrete) [1–3]

RR (respiratory rate) (Discrete) [1–3]

Temp (temperature) (Discrete) [1–5]

Laboratory results WBC (white blood cell count) (Discrete) [1–5]

Hgb (hemoglobin) (Discrete) [1–3]

Hct (hematocrit) (Discrete) [1–4]

Plt (Platelet count) (Discrete) [1–4]

Na (sodium) (Discrete) [1–4]

K (potassium) (Discrete) [1–3]

HCO3 (bicarbonate) (Discrete) [1–3]

BUN (blood urea nitrogen) (Discrete) [1–4]

Cr (creatinine) (Discrete) [1–3]

Glu (glucose) (Discrete) [1–4]

Tot Bili (total bilirubin) (Discrete) [1–3]

SGOT/AST (aspartate aminotransferase) (Discrete) [1–3]

Alk Phos (alkaline phosphatase) (Discrete) [1–3]

LDH (lactate dehydrogenase) (Discrete) [1–3]

ABG (arterial blood gas) pH (Discrete) [1–4]

pCO2 (Discrete) [1–4]

pO2 (Discrete) [1–4]

O2 saturation (Discrete) [0–1]

X-ray Infiltrate Yes/no

Pleural effusion Yes/no

Outcome Dire outcome Yes/no

Note: Continuous variables were discretized based on clinical judgment of pneumonia experts in the pneumonia PORT project.20 The label
“(Discrete)” in the description indicates that a variable is a discretized version of a continuous variable.
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severe complications, such as myocardial infarction, pulmo-
nary embolism, stroke, etc.21 About 11.4% (261) patients had
a dire outcome in the PORT dataset.

Training and test sets: the data consisting of 2,287 cases
was divided into a training dataset of 1,601 cases (70%) and a
test dataset of 686 cases (30%) by using stratified random-
sampling such that both sets had approximately the same
proportion of cases with dire outcomes as the full dataset
(11.4% [182/1,601] and 11.5% [79/686] of patients had a dire
outcome in the training and test sets, respectively). Missing
data were imputed using an iterated k-nearest neighbor
method,22 and continuous variables were discretized based
on clinical judgment of pneumonia experts in the pneumonia
PORT project.

Development of Predictive Models
We applied severalmachine learningmethods to the training
set to develop predictive models, and we applied the best-
performing model to the test set to generate predictions.

Machine learning methods: themachine learningmethods
that we used for developing predictive models are logistic
regression with regularization (LR), random forest (RF),
support vector machine (SVM), and naïve Bayes (NB). We
selected these methods as representative of the machine-
leaning methods that are typically used for developing
predictive models in biomedicine. We used the implemen-
tations of these methods that are available in the scikit-learn
package.23

We tuned the hyper-parameters using 10-fold cross vali-
dation on the training set. The hyper-parameters that we
configured included the regularization coefficient ([0.1, 1,
10]) for the LR and SVM models, number of trees ([100, 500,
1,000, 3,000]) for the RF model, and the Laplace smoothing
parameter ([0, 0.1, 1, 10, 100]) for the NB model.

Evaluation of model performance: we evaluated the pre-
dictive models on the training set using 10-fold cross valida-
tion. The metrics we used included F1 score, area under the
receiver operating characteristic curve (AUROC), positive

predictive value (PPV), sensitivity, and specificity. The F1
score is the harmonicmean of PPVand sensitivity and ranges
between 0 and 1.24 A high F1 score indicates that both PPV
and sensitivity are high. We selected the machine learning
methodwith the highest F1 score and reapplied it to the full-
training set to derive the final model. We applied the final
model to predict the outcomes for cases in the test set.

Generation of Patient-Specific Explanations
We used LIME to generate explanations for a selected set of
40 cases in the test set. A description on the selection of the
40 cases is provided in the next section. LIME is a model-
independent explanation method that provides an explana-
tion for a predicted case by learning an interpretable model
from data in the neighborhood of the case (such as a local
linear model with a small number of nonzero coefficients).
More specifically, LIME provides for each patient feature the
magnitude and the direction of support for the predicted
outcome (see ►Fig. 1). The magnitude of support is the
weight of an explanatory feature, and the direction of
support is the sign of the weight, as estimated in LIME’s
local regression model. We limited the explanations to the
top six features with the highest magnitudes, as we found
that, on average, the magnitude of five to seven features
accounted for most of the total magnitude. We call the
patient features that were included in the explanation as
explanatory features.

Evaluation of Explanations
Three physicians independently evaluated explanations for
40 patient cases that were selected from the test set. We
selected cases for which the model correctly predicted the
outcome with high confidence (i.e., a patient was predicted
to have developed a dire outcome with probability>0.8 or
with probability<0.1). Of the 40 cases, 20 patients devel-
oped a dire outcome and 20 patients did not. Note that
patients with and without a dire outcome are expected to
have mostly the same predictors; however, the values of

Fig. 1 Example explanation obtained from LIME for a patient who was predicted to have a very high probability of dire outcome by a logistic
regression model. The bar plot at the top left shows the predicted probability distribution for dire outcome. The bar plot on the right shows the
explanation for the prediction. The explanation is limited to six top-ranked features by magnitude. The magnitude on the horizontal axis
represents the weight of a feature in the LIME’s local regression model. Green bars represent the magnitude of predictors that support the
predicted outcome, while red bars represent the magnitude of contradictory features. LIME, local interpretable model-agnostic explanations.
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those predictors are likely to be different. For example,
abnormal values in respiratory rate, arterial blood gases,
and lung status are likely to be predictor features in a patient
with a dire outcome, whereas normal values in respiratory
rate, arterial blood gases, and lung status are likely to be
predictor features in a patient without a dire outcome.

For each patient case, we provided the reviewers with a
description that included clinical findings and if a dire
outcome occurred or not, and the predicted probability of
the dire outcome occurring along with the explanation for
the prediction (see ►Fig. 2). Each reviewer assessed all 40
cases and the corresponding explanations, and specified if
she agreed or disagreed with each explanatory feature. The
reviewer was instructed to disagree with an explanatory

feature if she did not agreewith themagnitude, the direction
(supportive vs. contradictory), or both.

To preclude reviewers from agreeing readily with explana-
tions without careful assessment, we fabricated explanations
in 10 of the 40 cases. To generate a fabricated explanation, we
replaced the labels (feature name and its value) of six top-
ranked features with the labels of six bottom-ranked fea-
tures, without modifying the magnitude or the direction of
support. The reviewers were informed that some of the
cases contained fabricated explanations but not which
ones. ►Table 3 shows the stratification of cases according
to the type of explanation (actual vs. fabricated) and by
outcome (had a dire outcome vs. did not have a dire
outcome) that we used for evaluation.

Fig. 2 An example patient case that gives a description of the patient, followed by an explanation and the questions that were asked of
reviewers.
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We analyzed the assessments of the reviewers with
several measures as follows: (1) We measured agreement
between pairs of reviewers with Cohen’s kappa coefficient25

and across all reviewers concurrently with Fleiss’ kappa
statistic.26 Cohen’s kappa coefficient measures the degree of
agreement between two reviewers on a set of samples,
whereas Fleiss’ kappa statistic can assess more than two
reviewers simultaneously. (2) For a given set of cases, we
calculated an agreement rate as the proportion of explana-
tory features with which majority of reviewers agreed. For
example, for a set of 10 cases where each case had an
explanation with six features, the denominator of the
agreement rate is 10�6¼60 features and the numerator
is the number of features with which majority of reviewers
agreed. Agreement rates were calculated separately for
cases with actual and fabricated explanations, and for cases
where the patients had a dire outcome and did not have a
dire outcome. (3) To statistically test for difference between
two agreement rates that are derived from two sets of
cases (e.g., actual vs. fabricated explanations, dire outcome
vs. no dire outcome), we used the Chi-square test of
independence.27

Results

We report the performance of the machine learning meth-
ods, briefly describe the prediction explanations, and pro-
vide the reviewers’ agreement scores.

Performance of Predictive Models
►Table 4 shows the performance of five machine learning
methods on the training set, asmeasured by F1 score, AUROC,
PPV, sensitivity, and specificity. The two logistic regression
models, LR-L1 and LR-L2, were trained with L1 and L2
regularization penalties, respectively. The LR-L1, LR-L2, NB,
and SVM models have similar F1 scores, whereas RF has a
lower F1 score despite having a similar AUROC to other
models. The LR-L1 and LR-L2 models had similar perfor-
mance; however, we chose the LR-L1 model as the best-
performing model because it shrinks some of the regression
coefficients to zero and provides a sparse solution.

Description of Explanations
We applied the LR-L1 model to all cases in the test set and
selected 40 cases based on criteria described in Section Meth-
ods, “Evaluation of Explanations.” We used LIME to generate
explanations for the selected cases.►Tables 5 and 6 show the
explanatory variables and their count of appearance in the
actual and fabricated explanations respectively.

Evaluation of Explanations
Agreement among reviewers: ►Table 7 shows the agreement
scores between pairs of reviewers and across all three
reviewers. For both actual and fabricated explanations,
Cohen’s kappa coefficients indicate strong agreement be-
tween reviewers 1 and 2, and fair to moderate agreement
between reviewer 3 and the other two reviewers (according
to the agreement levels proposed by McHugh28). The Fleiss’
kappa statistic shows moderate agreement across all
reviewers when considering all explanatory features. Much
of the disagreement between reviewer 3 and the others was
due to differing opinions on headache as an explanatory
feature. After excluding headache from the analysis, Cohen’s
kappa coefficient for all explanatory features for reviewers 1
and 3 increased from 0.49 to 0.76, and the corresponding
Cohen’s kappa coefficient for reviewers 2 and 3 increased
from 0.33 to 0.58.

Agreement with LIME-generated explanations: ►Table 8

shows agreement rates for explanations as the proportion of
explanatory features with which majority of reviewers
agreed. The agreement rate was 0.78 (141/180) for actual
explanations and 0.52 (31/60) for fabricated explanations;

Table 4 Performance of five machine learning methods on the training set using 10-fold cross validation

Model F1 score AUROC PPV Sensitivity Specificity

LR-L1 0.43 (� 0.02) 0.84 (� 0.03) 0.31 (� 0.02) 0.69 (� 0.02) 0.81 (� 0.02)

LR-L2 0.43 (� 0.02) 0.84 (� 0.03) 0.32 (� 0.02) 0.69 (� 0.02) 0.81 (� 0.02)

NB 0.42 (� 0.02) 0.84 (� 0.03) 0.30 (� 0.02) 0.76 (� 0.02) 0.76 (� 0.02)

SVM 0.42 (� 0.02) 0.84 (� 0.03) 0.29 (� 0.02) 0.74 (� 0.02) 0.77 (� 0.02)

RF 0.23 (� 0.02) 0.85 (� 0.03) 0.52 (� 0.02) 0.16 (� 0.02) 0.98 (� 0.01)

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval; LR-L1, LASSO logistic regression; LR-L2, ridge
logistic regression; NB, naïve Bayes; PPV, positive predictive value; RF, random forest; SVM, support vector machine.
Note: The models are sorted in descending order of their F1 scores. The 95% CI for AUROCs were calculated using the Delong’s method,38,39 and the
95% CI for the other measures were calculated using the Wilson’s score interval.40

Table 3 Cases used for evaluation, stratified by type of
explanations and outcomes

Type of explanations and outcomes Number
of cases

Cases with actual explanations

where patients had a dire outcome 15

where patients did not have a dire outcome 15

Cases with fabricated explanations

where patients had a dire outcome 5

where patients did not have a dire outcome 5

Total 40
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the difference between the two agreement rateswas statisti-
cally significant (Chi-square¼19.76, p-value<0.01). For ac-
tual explanations, agreement rates were 0.81 (73/90) for
cases where the patients had a dire outcomes and 0.76 (68/
90) for cases where the patients did not have a dire outcome;
the difference between the two agreement rates was not
statistically significant (Chi-square¼0.55, p-value¼0.53).

When headache was excluded from the analysis, the
agreement rate increased from 0.78 to 0.93 for actual expla-
nations. The agreement rate for fabricated explanations did
not change from 0.52 because headache did not occur in
fabricated explanations.

Discussion

Computerized clinical decision-supporting systems that uti-
lize predictivemodels for predicting clinical outcomes can be
enhanced with explanations for predictions. Such explana-
tions provide context for the predictions and guide physi-
cians in better understanding supportive and contradictory
evidence for the predictions. In this paper, we presented a
method to augment clinical outcome predictions—obtained
from a predictive model—with simple patient-specific ex-
planations for each prediction. The method uses LIME that
generates a patient-specific linear model which provides a
weight for each feature. The weight provides insight about
the relevance of each feature in terms of magnitude and
direction of its contribution to a prediction. LIME has been
shown to produce explanations that users find to be useful
and trustworthy in general prediction problems.15

In this study, we developed and evaluated several
machine learning methods and chose a logistic regression
model since it had the best performance. In this scenario, the
model could be used directly to provide explanations—the
weight of a feature for an explanation can be computed by
multiplying the feature level by the corresponding odds ratio.
However, in general, as the size and dimensionality of the
data increase, more complex, and less interpretable models,
like deep neural networks, are likely to perform better and
the use of a model-independent explanation method like
LIME becomes necessary.

Using LIME, we generated explanations for 40 cases and
evaluated the explanations with three physician reviewers.
The reviewers agreed with 78% of LIME-generated explana-
tory features for actual explanations and agreed with only
52% of explanatory features for fabricated explanations. This
result provides evidence that the reviewers are able to
distinguish between valid and invalid explanations. The
results also indicate that agreement on cases where the
patients had a dire outcome is not statistically significantly
different fromagreement on caseswhere the patients did not
have a dire outcome.

Headache was a feature that was provided as an explana-
tory feature in most of the cases where the patients experi-
enced a dire outcome. Two of the reviewers deemed
headache to be mildly supportive, whereas the third review-
er did not consider headache to be a supportive feature. In

Table 5 Variables and their count of appearance in the 30
actual explanations

Variable Count

Lungs status 30

Headache 30

pO2 (arterial blood gas) 23

RR (respiratory rate) 21

Prior episodes of pneumonia 18

Hgb (hemoglobin) 18

Glu (glucose) 17

BP systolic 16

Age 5

Sweating 1

Confusion 1

Table 7 Interreviewer agreement scores

Explanations Reviewer 1 vs. reviewer 2 Reviewer 1 vs. reviewer 3 Reviewer 2 vs. reviewer 3 All reviewers

All 0.87 0.49 0.33 0.57

Actual 0.82 0.24 0.01 0.39

Fabricated 0.93 0.70 0.63 0.75

Note: agreements between pairs of reviewers show the Cohen’s kappa coefficient and agreement across all reviewers show the Fleiss’ kappa statistic.

Table 6 Variables and their count of appearance in the 10
fabricated explanations

Variable Count

Sex 10

Race 7

Cr (creatinine) 7

K (potassium) 6

HR (heart rate) 6

Plt (platelet count) 5

pCO2 (arterial blood gas) 4

WBC (white blood cell count) 4

BP (diastolic) 4

Ethnicity 3

Hct (hematocrit) 2

Liver disease 1

Infiltrate 1
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support of the third reviewer’s judgment, commonly used
scoring systems for assessment of severity of CAP, such as the
pneumonia severity index13 and CURB-6529 do not include
headache as a predictive feature. In the dataset, we used,
almost all models included headache as a predictive feature;
this may be because the Pittsburgh portion of the PORT data
that we used in our experiments may have predictive
features, such as headache, that are specific to the region.
This indicates that predictive features in a model depend on
the dataset that is used and explanations may uncover and
inform physicians of features that are locally valid. More
generally, this may suggest that predictive models should be
derived from data that is from the locationwhere themodels
will be deployed.

It is plausible that explanations of predictions are likely
to be useful in clinical decision making,10,11 and model-
independent methods like LIME provide a method to gen-
erate explanations from any type of model.15 However, it
needs to be established that such explanations are valid,
accurate, and easily grasped by physicians in the context of
clinical predictive models. This study provides a first step
toward that goal.

Limitations and Future Directions
This study has several limitations. Though LIME has the
advantage that it can be used in conjunction with any
predictive model, it has the limitation that internally it
constructs a simple model. LIME constructs a local linear
model from data in the neighborhood of the case of interest,
and it seems reasonable to assume linearity in a small region
evenwhen the primarymodel is not linear. However, we and
other investigators have noticed that the prediction of LIME’s
local model is not always concordant with the prediction of
the primary predictivemodel.30Methods like LIMEwill need
to be modified such that the predictions agree with those of
the primary predictive model and work is ongoing in the
research community to improve LIME.

This study used a single dataset that is relatively old (data
collection occurred in the early 1990s), measures only one
medical condition, and is limited to patient visits at a single
geographical location. Additionally, the number of physician
evaluatorswasrelativelysmall. Toexplorethegeneralizabilityof

using LIMEwith predictive models, newer datasets are needed
in which different outcomes are measured and samples are
collected from diverse geographical locations. Higher numbers
of physician evaluators can also yieldmore reliable evaluations.

Conclusion

This study demonstrated that it is possible to generate
patient-specific explanations to augment predictions of clin-
ical outcomes by using available machine learning methods
for bothmodel development and generation of explanations.
Moreover, explanations that were generated for predicting
dire outcomes in CAP were assessed to be valid by physician
evaluators. Such explanations can engender trust in the
predictions and enable physicians to interpret the predic-
tions in the clinical context.

Clinical Relevance Statement

This study demonstrated that there was good agreement
among physicians on patient-specific explanations that are
generated to augment predictions from machine learning
models of clinical outcomes. Such explanations will enable
physicians to better understand the predictions and inter-
pret them in the clinical context, and might even influence
the clinical decisions they make. Computerized clinical
decision-supporting systems that deliver predictions can
be enhanced to provide explanations to increase their
utility.
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Institutional Review Board.

Funding
The research reported in this publicationwas supported by
theNational LibraryofMedicineof theNational Institutesof
Health under award number R01LM012095. The content of
thepaper is solely the responsibilityof theauthors anddoes
not necessarily represent the official views of the National
Institutes of Health or the University of Pittsburgh.

Table 8 Agreement rates for LIME-generated explanations, stratified by type of explanations and outcomes

Type of explanations and outcomes Agreement rate (no. of agreements/no. of features)

Cases with actual explanations

where patients had a dire outcome 0.81 (73/90)

where patients did not have a dire outcome 0.76 (68/90)

all patients 0.78 (141/180)

Cases with fabricated explanations

where patients had a dire outcome 0.27 (8/30)

where patients did not have a dire outcome 0.77 (23/30)

all patients 0.52 (31/60)

Abbreviation: LIME, local interpretable model-agnostic explanations.
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