Synlett 2020; 31(20): 2049-2053
DOI: 10.1055/s-0039-1691574
letter

Iron-Catalyzed Tandem Radical Addition/Cyclization: Highly Efficient Access to Methylated Quinoline-2,4-diones

Huan Sun  ◊
,
Yue Jiang ◊
,
Ming-Kun Lu
,
Yun-Yun Li
,
Li Li
,
Ji-Kai Liu
School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. of China   Email: jkliu@mail.kib.ac.cn
› Author Affiliations
H.S. gratefully acknowledges funding from National Natural Science Foundation of China (81803395), Natural Science Foundation of Hubei Province (2018CFB222), and the Fundamental Research Funds forthe Central Universities, South-Central University for Nationalities(CZY20023). J.L. thanks funding from National Key R&D Plan (2017YFC1704007), National Natural Science Foundation of China (81773590), and the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZP1800).


These authors contributed equally to this work.

Abstract

A visible-light-induced and iron-catalyzed oxidative radical addition/cyclization cascade reaction of N-(o-cyanoaryl)acrylamides with dimethyl sulfoxide has been developed. The method exhibits a wide substrate scope and an excellent functional-group tolerance, thus providing an efficient and convenient access to a variety of methylated quinoline-2,4-diones.

Supporting Information

Primary Data



Publication History

Received: 21 November 2019

Accepted: 25 December 2019

Article published online:
21 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Seong CM, Park WK, Park CM, Kong JY, Park NS. Bioorg. Med. Chem. Lett. 2008; 18: 738
    • 1b McCormick JL, McKee TC, Cardellina JH, Boyd MR. J. Nat. Prod. 1996; 59: 469
    • 1c Ahmed N, Brahmbhatt KG, Sabde S, Mitra D, Singh IP, Bhutani KK. Bioorg. Med. Chem. 2010; 18: 2872
    • 1d Han S, Zhang F.-F, Qian H.-Y, Chen L.-L, Pu J.-B, Xie X, Chen J.-Z. J. Med. Chem. 2015; 58: 5751
    • 1e Liu Y.-X, Zhao H.-P, Wang Z.-W, Li Y.-H, Song H.-B, Riches H, Beattie D, Gu Y.-C, Wang Q.-M. Mol. Diversity 2013; 17: 701
    • 2a Antolak SA, Yao Z.-K, Richoux GM, Slebodnick C, Carlier PR. Org. Lett. 2014; 16: 5204
    • 2b Zografos AL, Mitsos CA, Igglessi-Markopoulou O. Org. Lett. 1999; 1: 1953
    • 2c Shin YS, Song SJ, Kang S, Hwang HS, Jung Y.-S, Kim C.-H. J. Appl. Toxicol. 2014; 34: 191
    • 3a Tang X.-J, Thomoson CS, Dolbier WR. Jr. Org. Lett. 2014; 16: 4594
    • 3b Zhang Z, Tang X.-J, Dolbier WR. Jr. Org. Lett. 2016; 18: 1048
    • 3c Li Y.-L, Wang J.-B, Wang X.-L, Cao Y, Deng J. Eur. J. Org. Chem. 2017; 6052
    • 3d Wan W, Li J, Ma G, Chen Y, Jiang H, Deng H, Hao J. Org. Biomol. Chem. 2017; 15: 5308
    • 3e Fu W, Zhu M, Zou G, Xu C, Wang Z. Asian J. Org. Chem. 2014; 3: 1273
    • 3f Wang J.-Y, Su Y.-M, Yin F, Bao Y, Zhang X, Xu Y.-M, Wang X.-S. Chem. Commun. 2014; 50: 4108
    • 3g Wang J.-Y, Zhang X, Bao Y, Xu Y.-M, Cheng X.-F, Wang X.-S. Org. Biomol. Chem. 2014; 12: 5582
    • 3h Gu Z, Zhang H, Xu P, Cheng Y, Zhu C. Adv. Synth. Catal. 2015; 357: 3057
    • 3i Tang S, Li Z.-H, Wang M.-W, Li Z.-P, Sheng R.-L. Org. Biomol. Chem. 2015; 13: 5285
    • 3j Nagode SB, Chaturvedi AK, Rastogi N. Asian J. Org. Chem. 2017; 6: 453
    • 3k Wang C, Chen Q, Guo Q, Liu H, Xu Z, Liu Y, Wang M, Wang R. J. Org. Chem. 2016; 81: 5782
    • 3l Wang X, Wan W, Chen Y, Li J, Jiang H, Wang Y, Deng H, Hao J. Eur. J. Org. Chem. 2016; 3773

      For reviews, see:
    • 4a Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
    • 4b Song R.-J, Liu Y, Xie Y.-X, Li J.-H. Synthesis 2015; 47: 1195
    • 4c Li C.-C, Yang S.-D. Org. Biomol. Chem. 2016; 14: 4365

    • For selected examples, see:
    • 4d Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
    • 4e Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
    • 4f Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 5a Yang T, Xia W.-J, Shang J.-Q, Li Y, Wang X.-X, Sun M, Li Y.-M. Org. Lett. 2019; 21: 444
    • 5b Wu L.-J, Yang Y, Song R.-J, Yu J.-X, Li J.-H, He D.-L. Chem. Commun. 2018; 54: 1367
    • 5c Wang SS, Fu H, Wang G, Sun M, Li YM. RSC Adv. 2016; 6: 52391
    • 5d Wang S, Huang X, Wang Q, Ge Z, Wang X, Li R. RSC Adv. 2016; 6: 11754
  • 6 Wang S.-S, Fu H, Shen Y.-H, Sun M, Li Y.-M. J. Org. Chem. 2016; 81: 2920
  • 7 Li Y.-M, Wang S.-S, Yu F, Shen Y, Chang K.-J. Org. Biomol. Chem. 2015; 13: 5376
    • 8a Ding F, Fang Y, Jiang Y, Lin K, Shi L. Chem. Asian J. 2018; 13: 636
    • 8b Fu H, Wang S.-S, Li Y.-M. Adv. Synth. Catal. 2016; 358: 3616
  • 9 Yang T, Zhou J.-L, Li J, Shen Y, Gao C, Li Y.-M. Synthesis 2018; 50: 3460
  • 10 Sun H, Jiang Y, Yang Y.-S, Li Y.-Y, Li L, Wang W.-X, Feng T, Li Z.-H, Liu J.-K. Org. Biomol. Chem. 2019; 17: 6629
    • 11a Uemura T, Yamaguchi M, Chatani N. Angew. Chem. Int. Ed. 2016; 55: 3162
    • 11b Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
    • 11c Jin J, MacMillan DW. C. Nature 2015; 525: 87
    • 11d Chen X, Li J.-J, Hao S.-X, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 78
  • 12 Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
  • 13 Li Z, Zhang Y, Zhang L, Liu Z.-Q. Org. Lett. 2014; 16: 382
  • 14 Wu T, Zhang H, Liu G. Tetrahedron 2012; 68: 5229
  • 15 Dai Q, Yu JT, Jiang Y, Guo SJ, Yang HT, Cheng J. Chem. Commun. 2014; 50: 3865
    • 16a Caporaso R, Manna S, Zinken S, Kochnev AR, Lukyanenko ER, Kurkind AV, Antonchick AP. Chem. Commun. 2016; 52: 12486
    • 16b Xie Z, Li P, Hu Y, Xua N, Wang L. Org. Biomol. Chem. 2017; 15: 4205
    • 16c Li Z, Cui X, Niu L, Ren Y, Bian M, Yang X, Yang B, Yan Q, Zhao J. Adv. Synth. Catal. 2017; 359: 246
  • 17 Yang T, Xia W.-J, Zhou B, Xin Y, Shen Y, Li Y.-M. Eur. J. Org. Chem. 2019; 5749
    • 18a Arslan-Alaton I, Gurses F. J. Photochem. Photobiol., A 2004; 165: 165
    • 18b Muruganandham M, Swaminathan M. Sep. Purif. Technol. 2006; 48: 297
    • 19a Xu X.-R, Li H.-B, Wang W.-H, Gu J.-D. Chemosphere 2004; 57: 595
    • 19b Rodrigues de Souza D, Mendonca Duarte ET. F, de Souza Girardi G, Velani V, de Hora Machado AE, Sattler C, de Oliveira L, de Miranda JA. J. Photochem. Photobiol., A 2006; 179: 269
  • 20 3-Ethyl-1,3-dimethylquinoline-2,4(1H,3H)-diones 2ap; General Procedure FeSO4·7H2O (0.015 mol, 15 mol%) and the appropriate N-(2-cyanoaryl)-N-methylmethacrylamide 1 (0.1 mol, 1.0 equiv) were sequentially weighed into a tube, and DMSO (1.0 mL) and 30% aq H2O2 (300 μL) were added from a syringe. The mixture was then irradiated by a 6 W blue LED at r.t. under air for 12 h. The volatile solvent and reagents were removed by rotary evaporation, and the residue was purified by flash chromatography (silica gel, PE–EtOAc). 3-Ethyl-1,3-dimethylquinoline-2,4(1H,3H)-dione (2a) Colorless oil; yield: 15.4 mg (71%). 1H NMR (600 MHz, CDCl3): δ = 8.02 (dd, J = 7.7, 1.6 Hz, 1 H), 7.63 (ddd, J = 8.4, 7.3, 1.7 Hz, 1 H), 7.23–7.11 (m, 2 H), 3.49 (s, 3 H), 2.10–1.87 (m, 2 H), 1.46 (s, 3 H), 0.79 (t, J = 7.4 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 197.59, 173.78, 143.22, 135.90, 127.95, 122.97, 120.43, 114.68, 57.87, 32.71, 29.70, 21.97, 9.47. HRMS (ESI): m/z [M + H]+ calcd for C13H16NO2: 218.1181; found: 218.11755. N-(2-Cyanophenyl)-2-hydroxy-2-methylbutanamide (3a) Colorless oil; yield: 15.9 mg (73%). 1H NMR (600 MHz, CDCl3): δ = 9.41 (s, 1 H), 8.56–8.41 (m, 1 H), 7.60 (td, J = 7.6, 7.1, 1.5 Hz, 3 H), 7.18 (td, J = 7.7, 0.9 Hz, 1 H), 2.02 (dq, J = 14.9, 7.5 Hz, 1 H), 1.73 (dq, J = 14.8, 7.5 Hz, 1 H), 1.54 (s, 3 H), 0.98 (t, J = 7.5 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 174.31, 140.17, 134.16, 132.26, 124.12, 120.62, 116.23, 102.28, 33.34, 26.34, 7.82. HRMS (ESI): m/z [M + H]+ calcd for C12H15N2O2: 219.1134; found: 219.11276.