Dipeptide-Based Phosphonium Salt Catalysis: Application to Enantioselective Synthesis of Fused Tri- and Tetrasubstituted Aziridines

J.-H. Wu
J. Pan
T. Wang*
Sichuan University, P. R. of China

Bifunctional phosphonium salt aza-Darzens

52 examples
85–99% yield
all >20:1 dr
up to >99.9% ee

R3
O
X
Y
n
X = Br, Cl
Y = H, O, CH2
n = 0, 1, 2
R2 = aryl
R1 = H, alkoxy, alkyl, aryl, halogen
R2 = H, ester

Iridium-Catalyzed Asymmetric C–H Borylation Enabled by Chiral Bidentate Boryl Ligands

Y. Shi
Q. Gao
S. Xu*
University of Chinese Academy of Sciences, P. R. of China
Hangzhou Normal University, P. R. of China

DG = amine, amide

up to 96% ee

up to 96% ee
Recent Advances in the Synthesis of Acridines and Phenazines

Y. Xiao
W. Hu
S. Sun
J.-T. Yu
J. Cheng*
Changzhou University, P. R. of China

Reprogramming Nonribosomal Peptide Synthesis by Surgical Mutation

D. L. Niquille
D. A. Hansen
D. Hilvert*
ETH Zurich, Switzerland

Base-Controlled One-Pot Chemoselective Suzuki–Miyaura Reactions for the Synthesis of Unsymmetrical Terphenyls

X. Li*
F. Feng
C. Ren
Y. Teng
Q. Hu
Z. Yuan*
Zunyi Medical University, P. R. of China
Copper Aluminate Spinel in Click Chemistry: An Efficient Heterogeneous Nanocatalyst for the Highly Regioselective Synthesis of Triazoles in Water

D. Khalili,* L. Kavoosi A. Khalafi-Nezhad Shiraz University, Iran

Advantages:
* Simple removal of the catalyst
* Short reaction time
* High yields
* High diversity
* Green solvent

Highly Chemoselective Solvent-Free Synthesis of 1,3,5-Triaryl-1,5-diketones: Crystallographic Investigation and Intramolecular Weak Bifurcated H Bonds Involving Aliphatic C–H Group

Z. Yin C. Xiong J. Guo X. Hu,* Z. Shan V. Borovkov* South-Central University for Nationalities, P. R. of China

Acetic Acid Catalysed One-Pot Synthesis of Pyrrolo[1,2-α]quinoxaline Derivatives

P. N. M. Allan M. I. Ostrowska B. Patel* London Metropolitan University, UK
Direct Synthesis of N-Functionalized Dipropargylamine Linkers as Models for Use in Peptide Stapling

A. Renzetti*
R. N. Rutherford
K. Fukumoto
D. Kunciw
H. F. Sore
D. R. Spring*

University of Cambridge, UK

Stereoselective Synthesis of the A,E-Ring Bicyclic Core of Calyciphylline B-Type Alkaloids

B. S. Kumar
S. Raghavan*

Indian Institute of Chemical Technology, India

Copper(II)-Catalyzed C–N Coupling of Aryl Halides and N-Nucleophiles Promoted by Quebrachitol or Diethylene Glycol

F. Du
Q. Zhou
Y. Fu
Y. Chen
G. Chen*

Shenyang Pharmaceutical University, P. R. of China
Yunnan Institute of Tropical Crops, P. R. of China
Synthesis of Acetamides from Aryl Amines and Acetonitrile by Diazotization under Metal-Free Conditions

Y.-F. Zeng
Y.-N. Li
N.-N. Zhang
H. Kang
P. Duan
F. Xiao
Y. Guo
X. Wen*
University of South China, P. R. of China

CH₃CN, H₂O
TfOH, t-BuONO, 60 °C

R = OMe, OH, CO₂Et, CF₃,
NO₂, F, Cl, Br, I
X = C, N

without metal catalyst
selective to aromatic amines
22 examples up to 85% yield

α-D-Galacturonic Acid as Natural Ligand for Selective Copper-Catalyzed N-Arylation of N-Containing Heterocycles

C. Yuan*
Y. Zhao
L. Zheng
Jinzhou Medical University, P. R. of China

K₂CO₃ (3.0 equiv)
in aq DMSO under Ar
80–120 °C

CuBr (5 mol%)
GalA (10 mol%)
abundant source
eco-friendly
selective
water soluble

Copper(I)-Catalyzed Sulfenylation of 1,3-Dicarbonyl Substrates with Disulfides under Mild Conditions

J. Zhao
F. Yang
Z. Yu
X. Tang
Y. Wu
C. Ma
Q. Meng*
Dalian University of Technology,
P. R. of China

HIGH ATOM ECONOMY
MILD CONDITIONS
SIMPLE PROCEDURE WITH UP TO 95% YIELD

16 examples up to 95% yield
Preparation of α-L-Rhamnosides by Open and Conventional Glycosylations for Studies of the rHPL Lectin

Synlett

2019, 30, 2185–2192
DOI: 10.1055/s-0039-1690710

| F. Demeter |
| T. Balogh |
| T.-K. Fu |
| M. D.-T. Chang |
| Y.-C. Lee |
| A. Borbás* |
| M. Herczeg* |

University of Debrecen, Hungary

Preparation of α-L-Rhamnosides by Open and Conventional Glycosylations for Studies of the rHPL Lectin

Letter

2185

Open or **Conventional glycosylations**

1. \(R = \text{NHCD}_{3} \) or \(\text{SPh} \)
2. \(R = \text{H} \) or \(R = \text{Ac} \)

Lectin binding studies:
1. 2: Higher binding affinity

48–62%, 7 steps
or
54–76%, 9–10 steps

A Chemoenzymatic Formal Synthesis of Epoxyquinols A and B

Synlett

2019, 30, 2193–2197
DOI: 10.1055/s-0039-1690216

| J. A. Collins* |
| C. J. Gerry |
| M. M. Duncan |

Whitman College, USA

A Chemoenzymatic Formal Synthesis of Epoxyquinols A and B

Letter

2193

Ralstonia eutropha B9 whole cells

BZDO benzoate dioxygenase

Catalytic Asymmetric Synthesis of Atropisomeric Quinolines through the Friedländer Reaction

Synlett

2019, 30, 2198–2202
DOI: 10.1055/s-0039-1690228

| J. Wan |
| H. Liu |
| Y. Lan† |
| X. Li |
| X. Hu |
| J. Li |
| H.-P. Xiao |
| J. Jiang* |

Wenzhou University, P. R. of China

Catalytic Asymmetric Synthesis of Atropisomeric Quinolines through the Friedländer Reaction

Letter

2198

CPA (10 mmol%)
PhCN, 5 Å MS, 20 h

17 examples

up to 94% yield
or
up to 95% ee