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Abstract Pd-NHC catalysed direct sulfenylation and selenylation of 3-
iodo-4-quinolones has been developed. This protocol provides an alter-
native route for the construction of ipso-C-S and C-Se bond formation
in 4-quinolones under aerobic conditions.

Key words 4-quinolone, Pd-NHC, sulfenylation, selenylation, cross-
coupling

Thioether-functionalised heterocycles are an important
class of compounds that are widely found in organic dyes,
pharmaceuticals, functional materials, agrochemicals, bio-
active products and drugs.! As a result, various methods are
available for C-S cross-coupling reactions since its first re-
port by Migita et al. in 1978.2 A variety of thioethers have
been found to have applications in the treatment of various
diseases such as Parkinson’s,? Alzheimer’s,* HIV,> and breast
cancer.® Similarly, organoselenium compounds have been
shown to demonstrate anticancer, antiviral, antitumor, an-
timicrobial and antioxidant activities.” On account of their
hydrogen-bond acceptor and electron-donor properties, or-
ganoselenium compounds can dramatically enhance the
biological activity of the parent structure.® An example is
Ebselen, an organoselenium compound introduced in 1980
as a neuroprotective and antioxidant agent.® Structures of
representative biologically active moieties containing diaryl
sulfide and selenide moieties are shown in Figure 1. In view

« operationally simple

* broad substrate scope

* C-S/C-Se bond formation

* low catalyst amount

« good to excellent product yield
» NH protection free

* fast reaction
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ArSH/ArSSAr and ArSeSeAr
27 examples, up to 95% yield

of their importance in the field of biology, the development
of highly efficient and simple protocols for construction of
C-S and C-Se linkages continues to be of interest.!°
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Figure 1 Representative examples of important biologically active
scaffolds containing C-S and C-Se linkages

4-Quinolones frequently feature in pharmaceutical
chemistry exhibiting properties such as antibacterial,'! an-
timalarial,’? and anticancer activities.'> As a consequence,
the synthesis of 4-quinolones and their derivatives has re-
ceived considerable interest and various synthetic proce-
dures are available in the literature.'® 3-Aryl- or 3-het-
eroaryl-substituted quinolones have been widely explored
because of their profound biological activities.'> However,
functionalisation at C-3 of quinolin-4-ones remains a chal-
lenging task due to the requirement for NH prefunctional-
isation and protection. Recently, Zhang et al. introduced a
technique for thioetherification at C-3 of 4-quinolones via
Pd catalysed decarboxylation.'® However, this protocol has
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Scheme 1 Previous methodologies for the synthesis of thioether derivatives of 4-quinolone. An approach for the synthesis of C-S and C-Se cross-

coupled product is reported herein.

some limitations including harsh reaction conditions, ex-
tended reaction times, requiring halogen-substituted 4-
quinolone substrates and prerequisite NH protection.

In this area, we have previously reported the regiocon-
trolled nitration at C-5 and C-7 of 4-quinolones under am-
bient conditions,!’® regioselective bromination at C-6 and
subsequent arylation via Suzuki cross coupling,'’" synthesis
of 3-aroyl-quinolin-4(1H)-ones from 3-iodo-quinolin-
4(1H)-ones using carbonylative Suzuki coupling,!’® carbon-
ylative Sonogashira annulation for the formation of 2-sub-
stituted 4-quinolone derivatives,'’d synthesis of N-arylated
derivatives under ligand free and ambient conditions,!’®
and Nal-mediated, metal-free synthesis of thioether and
selenoether derivatives.'”f More recently, we have disclosed
a transition-metal free approach for the regioselective C-3
thiocyanation and selenocyanation of the 4-quinolone scaf-
fold.”® Herein, we disclose a novel, simple and efficient
route for Pd-NHC'® catalysed thioetherification and sele-
nylation of 3-iodo-4-quinolones in good yields under aero-
bic conditions (Scheme 1). To our knowledge, no such study
has been documented before.

Our initial study began with the reaction between 3-
iodo-2-phenyl-4-quinolone (1a) and thiophenol. After a re-
action mixture containing 5 mol% Pd(OAc), and 2 equiv of
DBU in DMF was heated at 80 °C for 4 h, compound 2a was
isolated in 80% yield (Table 1, entry 1). Under identical con-
ditions, when switching to an inorganic base (K,CO;) the
yield of product 2a decreased to 71%. In the presence of
K,CO;, commercially available Pd salts such as Pd(OAc),,
PdCl,, and Pd(acac), resulted in similar yields of the cross-
coupled product (entries 2-4). Furthermore the yield of the

Table 1 Pd-NHC Catalysed C-S Cross Coupling: Effect of Reaction

Parameters?
O
| S
cwly —= 1)
N
O

2a

Entry Catalyst (mol%) Base Solvent Temp  Time Yield (%)
(9 (h)
1 Pd(OAc),(5)  DBU DMF 80 4 80
2 Pd(OAc),(5)  K,CO, DMF 80 4 7
3 Pdcl, (5) K,CO;  DMF 80 4 73
4 Pd(acac), (5)  K,CO;  DMF 80 4 70
5 Pd(PPhs), (5)  K,CO;  DMF 80 4 53
6 Pd-NHC (2) K,CO;  DMF 80 2 75
7 Pd-NHC (1) DBU DMF 80 2 83
8 Pd-NHC (1) EtsN DMF 80 2 79
9 Pd-NHC (1) Cs,CO;  DMF 80 2 52
10 Pd-NHC (1) DBU 1,4-dioxane 80 2 70
11 Pd-NHC (1) DBU DMF 40 2 67
12 Pd-NHC (1) DBU DMF rt 2 59
13 Pd-NHC(0.5) K,CO; DMF 80 2 72
14 Pd-NHC (0.5) DBU DMF 80 2 86

2 Reaction conditions: 3-iodo-2-phenyl substituted 4-quinolone (0.25
mmol, 86 mg), thiophenol (1.5 equiv, 0.375 mmol, 41 mg), base (0.5
mmol).

b|solated yield after purification by column chromatography.
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anticipated thioether derivative decreased when Pd(PPh;),
was used as catalyst (entry 5). It was found that in the pres-
ence of just 2 mol% of Pd-NHC catalyst the reaction was
complete within 2 h, resulting in the desired cross-coupled
product in 75% yield (entry 6). From the optimization table,
it is evident that organic bases are more effective. When the
cross-coupling reaction was carried out in the presence of 1
mol% Pd-NHC catalyst, after 2 h, 83% of the cross-coupled
product was isolated when DBU was used as base (entry 7).
An similar yield of product was observed using Et;N as base
but upon using Cs,CO; as base the yield dropped to 52% (en-
try 9). Furthermore, we found a direct relationship between
yield of cross-coupled product and the reaction tempera-
ture. Carrying out the reaction at lower temperatures re-
sulted in lower yields (entries 11, 12). After screening the
different parameters, we found the combination of Pd-NHC
as catalyst, DBU as base and DMF as solvent was optimal.
Notably, 0.5 mol¥% of Pd-NHC as catalyst afforded 2a in 86%
yield within 2 h at 80 °C and served as optimal conditions
for this protocol (entry 14).

With the optimised reaction conditions in hand, we ex-
plored the substrate scope of both 3-iodo-substituted 4-
quinolones and variously substituted thiols (Scheme 2). A
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broad range of thiophenols were reacted with various 3-
iodo-2-phenylquinolin-4-(1H)ones, affording the corre-
sponding 3-aryl sulfide-4-quinolones in good to excellent
yields. Both thiophenols possessing electron-donating and
electron-withdrawing groups performed well in this trans-
formation. 4-Fluorothiophenol coupled with 3-iodo-2-
phenylquinolin-4-(1H)one, resulting in 88% yield of the de-
sired product 2e. Likewise, 2-thionaphthol furnished mod-
erate to excellent yields (73-86%; 2g, 2Kk, 2r). The greater
steric bulk of the naphthyl might play a role in lowering the
yield of 2g and 2r. Next, we examined the influence of vari-
ous groups at C-2 of the 4-quinolone substrate. It was found
that electron-withdrawing groups at C-2 afforded much
higher yields in comparison to electron-donating substitu-
ents (2h-1, 2m, 2n, 2q, 2r). 2-Cyclohexyl-4-quinolone also
proved to be a good coupling partner with 4-chlorothio-
phenol (2n). The highest yield was obtained when 2-(4-flu-
orophenyl)-3-iodo-4-quinolone was coupled with 4-fluoro-
thiophenol to give 2j. Surprisingly, 2-(2-methylphenyl)-3-
iodo-4-quinolone did not afford the corresponding product
2s. The reaction was complete in 1-2 h. Cyclohexanethiol
smoothly participated in this sulfenylation reaction and
furnished the desired product 2t in 58% yield.
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Scheme 2 Substrate scope for the Pd-NHC catalysed thioetherification. Reagents and conditions: 3-iodo-2 substituted-4-quinolone (0.25 mmol), thio-
phenol (0.375 mmol), DBU (0.5 mmol, 76 mg), DMF (2 mL) at 80 °C. Isolated yield after column chromatography. ? Using PhSSPh (1.5 equiv).
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Once the synthesis of various thioethers had been ex-
plored, we extend the protocol to the corresponding C-Se
cross-coupling between various 3-iodo-2-phenyl-4-quino-
lones and diphenyl diselenide. Gratifyingly, the methodolo-
gy proved to be general and we obtained the corresponding
products 3a-g in good to excellent yields (Scheme 3). It is
important to note that electronic effects of the 2-substitu-
ents on the 4-quinolone have a profound impact on the
yield of selenide derivatives. 4-Quinolones possessing 2-cy-
clohexyl and 2-cyclopropyl substituents gave the highest
yields of the corresponding products 3b and 3f, whereas 2-
aryl substituents possessing electron-withdrawing group
such as 4-chloro and 4-fluoro resulted in comparatively low
yields of the coupled products 3c and 3d. The lowest yield
was observed for 2-(4-cyanophenyl)-4-quinolone, which
furnished only 48% of the desired coupling product 3e.

0
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+ ArSeSeAr
ZSN R DBU DMF
H 80°C,2h
1

¢

Se Se X
| | ( \
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Scheme 3 Substrate scope of the Pd-NHC catalysed selenylation. Re-
agents and conditions: 3-iodo-2-substituted- 4-quinolone (0.25 mmol),
diphenyl diselenide (0.375 mmol), DBU (0.5 mmol, 76 mg), DMF (2 mL)
at 80 °C. Isolated yield after purification by column chromatography.

The catalytic cycle for the C-S and C-Se cross-coupling
reactions of 4-quinolone derivatives initiated from in situ
generation of Pd(0) species follows the standard pathway
and is shown in Scheme 4. Oxidative addition to the 3-iodo-
2-substituted-4-quinolone affords aryl palladium interme-
diate A. Next, transmetallation of the thiophenol or organo-
diselenide with aryl palladium complex A forms intermedi-
ate B and the desired 3-sulfenylated or 3-selenylated deriv-

ative is obtained after reductive elimination with
concomitant regeneration of the Pd(0) species, which en-
ters the next catalytic cycle.
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Scheme 4 Plausible mechanism of the Pd-NHC catalysed C-S/C-Se
cross-coupling of 4-quinolone

S = solvent

In summary, we have revealed an alternative method for
the synthesis of ipso-C-S and C-Se substituted 4-quinolone
derivatives through Pd-NHC catalysed cross-coupling reac-
tion.! This method should be attractive to the synthetic
and pharmaceutical chemistry community for the library
synthesis of 4-quinolone derivatives. Biological screenings
of all compounds synthesised herein are under investiga-
tion in our laboratory.
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