Synthesis 2020; 52(14): 1991-2007
DOI: 10.1055/s-0039-1690869
review
© Georg Thieme Verlag Stuttgart · New York

Alkynyl Prins and Alkynyl Aza-Prins Annulations: Scope and Synthetic Applications

,
,
American Chemical Society Petroleum Research Fund (58776-NDI), National Science Foundation (CHE-1900050)
Further Information

Publication History

Received: 06 February 2020

Accepted after revision: 04 March 2020

Publication Date:
09 April 2020 (online)


Abstract

This review focuses on alkynyl Prins and alkynyl aza-Prins cyclization­ processes, which involve intramolecular coupling of an alkyne with either an oxocarbenium or iminium electrophile. The oxocarbenium or iminium species can be generated through condensation- or elimination-type processes, to achieve an overall bimolecular annulation that enables the synthesis of both oxygen- and nitrogen-containing­ saturated heterocycles with different ring sizes and substitution patterns. Also discussed are cascade processes in which alkynyl Prins heterocyclic adducts react to trigger subsequent pericyclic reactions, including [4+2] cycloadditions and Nazarov electrocyclizations, to rapidly construct complex small molecules. Finally, examples of the use of alkynyl Prins and alkynyl aza-Prins reactions in the synthesis of natural products are described. The review covers the literature through the end of 2019.

1 Introduction

1.1 Alkyne-Carbonyl Coupling Pathways

1.2 Coupling/Cyclization Cascades Using the Alkynyl Prins Reaction

2 Alkynyl Prins Annulation (Oxocarbenium Electrophiles)

2.1 Early Work

2.2 Halide as Terminal Nucleophile

2.3 Oxygen as Terminal Nucleophile

2.4 Arene as Terminal Nucleophile (Intermolecular)

2.5 Arene Terminal Nucleophile (Intramolecular)

2.6 Cyclizations Terminated by Elimination

3 Synthetic Utility of Alkynyl Prins Annulation

3.1 Alkynyl Prins-Mediated Synthesis of Dienes for a [4+2] Cyclo­- addition­-Oxidation Sequence

3.2 Alkynyl Prins Cyclization Adducts as Nazarov Cyclization Precursors

3.3 Alkynyl Prins Cyclization in Natural Product Synthesis

4 Alkynyl Aza-Prins Annulation

4.1 Iminium Electrophiles

4.2 Activated Iminium Electrophiles

5 Alkynyl Aza-Prins Cyclizations in Natural Product Synthesis

6 Summary and Outlook

 
  • References

    • 1a Arundale E, Mikeska LA. Chem. Rev. 1952; 51: 505
    • 1b Snider BB. The Prins and Carbonyl Ene Reactions . In Comprehensive Organic Synthesis, Vol. 2. Snider BB. Pergamon; Oxford: 1991: 527-561
    • 1c Pastor IM, Yus M. Curr. Org. Chem. 2007; 11: 925
    • 1d Pastor IM, Yus M. Curr. Org. Chem. 2012; 16: 1277
    • 1e Snider BB. Prins Reactions and Carbonyl, Imine, and Thiocarbonyl Ene Reactions. In Comprehensive Organic Synthesis II, Vol. 2. Elsevier; Amsterdam: 2014: 148-191
    • 3a Rodini DJ, Snider BB. Tetrahedron Lett. 1980; 21: 3857
    • 3b Hayashi A, Yamaguchi M, Hirama M. Synlett 1995; 195
    • 3c Viswanathan GS, Li C.-J. Tetrahedron Lett. 2002; 43: 1613
    • 3d Kabalka GW, Ju Y, Wu Z. J. Org. Chem. 2003; 68: 7915
    • 3e Rhee JU, Krische MJ. Org. Lett. 2005; 7: 2493
    • 3f Saito A, Umakoshi M, Yagyu N, Hanzawa Y. Org. Lett. 2008; 10: 1783
    • 3g Park JY, Ullapu PR, Choo H, Lee JK, Min S.-J, Pae AN, Kim Y, Baek D.-J, Cho YS. Eur. J. Org. Chem. 2008; 2008: 5461
    • 3h Balamurugan R, Gudla V. Org. Lett. 2009; 11: 3116
    • 3i Saito A, Kasai J, Odaira Y, Fukaya H, Hanzawa Y. J. Org. Chem. 2009; 74: 5644
    • 3j Miura K, Yamamoto K, Yamanobe A, Ito K, Kinoshita H, Ichikawa J, Hosomi A. Chem. Lett. 2010; 39: 766
    • 3k Okamoto N, Takeda K, Ishikura M, Yanada R. J. Org. Chem. 2011; 76: 9139
    • 3l Wang N, Cai S, Zhou C, Lu P, Wang Y. Tetrahedron 2013; 69: 647
    • 3m Masuyama Y, Takamura W, Suzuki N. Eur. J. Org. Chem. 2013; 2013: 8033
    • 5a Tanabe Y. Bull. Chem. Soc. Jpn. 1994; 67: 3309
    • 5b Tatina M, Kusunuru AK, Yousuf SK, Mukherjee D. Chem. Commun. 2013; 49: 11409
  • 6 Saito A, Kasai J, Konishi T, Hanzawa Y. J. Org. Chem. 2010; 75: 6980
    • 7a Jin T, Yamamoto Y. Org. Lett. 2007; 9: 5259
    • 7b Jin T, Yamamoto Y. Org. Lett. 2008; 10: 3137
    • 7c Jin T, Yang F, Liu C, Yamamoto Y. Chem. Commun. 2009; 3533
    • 7d Liu L, Wei L, Zhang J. Adv. Synth. Catal. 2010; 352: 1920
    • 7e Liu L.-P, Malhotra D, Jin Z, Paton RS, Houk KN, Hammond GB. Chem. Eur. J. 2011; 17: 10690
    • 7f Lin M.-N, Wu S.-H, Yeh MC. P. Adv. Synth. Catal. 2011; 353: 3290
    • 7g Yeh MC. P, Lin M.-N, Hsu C.-H, Liang C.-J. J. Org. Chem. 2013; 78: 12381
    • 8a Balog A, Geib SV, Curran DP. J. Org. Chem. 1995; 60: 345
    • 8b Lin H.-Y, Causey R, Garcia GE, Snider BB. J. Org. Chem. 2012; 77: 7143
    • 9a González-Rodríguez C, Escalante L, Varela JA, Castedo L, Saá C. Org. Lett. 2009; 11: 1531
    • 9b Yamamoto Y, Gridnev ID, Patil NT, Jin T. Chem. Commun. 2009; 5075
    • 9c Escalante L, González-Rodríguez C, Varela JA, Saá C. Angew. Chem. Int. Ed. 2012; 51: 12316
    • 9d Zheng D, Gong W, Ma Z, Ma B, Zhao X, Xie Z, Li Y. Tetrahedron Lett. 2011; 52: 314
    • 10a Xu T, Yang Q, Li D, Dong J, Yu Z, Li Y. Chem. Eur. J. 2010; 16: 9264
    • 10b Xu T, Yu Z, Wang L. Org. Lett. 2009; 11: 2113
    • 10c Takami K, Yorimitsu H, Shinokubo H, Matsubara S, Oshima K. Synlett 2001; 293
  • 11 It is worth noting that distinguishing between the alkynyl Prins pathway and the alkyne-carbonyl metathesis pathway can be difficult if oxygen nucleophiles are present, as both pathways may give enone products 6 upon hydrolytic workup.
  • 12 Kim Y.-H, Lee K.-Y, Oh C.-Y, Yang J.-G, Ham W.-H. Tetrahedron Lett. 2002; 43: 837
  • 13 Abd-El-Aziz AS, Bernardin S. Coord. Chem. Rev. 2000; 203: 219
    • 14a Carballo RM, Valdomir G, Purino M, Martin VS, Padrón JI. Eur. J. Org. Chem. 2010; 2010: 2304
    • 14b Subba Reddy BV, Nair PN, Antony A, Lalli C, Grée R. Eur. J. Org. Chem. 2017; 2017: 1805
  • 15 Jaber JJ, Mitsui K, Rychnovsky SD. J. Org. Chem. 2001; 66: 4679
  • 16 Nikolic NA, Gonda E, Longford CP. D, Lane NT, Thompson DW. J. Org. Chem. 1989; 54: 2748
  • 17 Miranda PO, Díaz DD, Padrón JI, Bermejo J, Martin VS. Org. Lett. 2003; 5: 1979
  • 18 Miranda PO, Carballo RM, Martin VS, Padrón JI. Org. Lett. 2009; 11: 357
  • 19 Sabitha G, Reddy KB, Bhikshapathi M, Yadav JS. Tetrahedron Lett. 2006; 47: 2807
  • 20 Alachouzos G, Frontier AJ. Angew. Chem. Int. Ed. 2017; 56: 15030
  • 21 Holt C, Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 5461
  • 22 Chavre SN, Choo H, Lee JK, Pae AN, Kim Y, Cho YS. J. Org. Chem. 2008; 73: 7467
  • 23 Saikia A, Reddy U. Synlett 2010; 1027
  • 24 Hinkle RJ, Lewis SE. Org. Lett. 2013; 15: 4073
  • 25 Mayr H, Schneider R, Wilhelm D, Schleyer P. vR. J. Org. Chem. 1981; 46: 5336
  • 26 Hinkle RJ, Chen Y, Nofi CP, Lewis SE. Org. Biomol. Chem. 2017; 15: 7584
  • 27 Shin C, Chavre SN, Pae AN, Cha JH, Koh HY, Chang MH, Choi JH, Cho YS. Org. Lett. 2005; 7: 3283
  • 28 Please see referenced article for the full synthetic scope.
  • 29 See Scheme 7 for clarification.
  • 30 Dziedzic M, Lipner G, Furman B. Tetrahedron Lett. 2005; 46: 6861
  • 31 Kato M, Saito A. Org. Lett. 2018; 20: 4709
  • 32 Compound 53 may be isolated as the corresponding keto alcohol following hydrolytic workup at low temperatures.
  • 33 Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 118
  • 34 Kotipalli T, Hou DR. Asian J. Org. Chem. 2019; 8: 1561
  • 35 Kotipalli T, Hou D.-R. Org. Lett. 2018; 20: 4787
  • 36 Li H, Chen Q, Lu Z, Li A. J. Am. Chem. Soc. 2016; 138: 15555
  • 37 Overman LE, Sharp MJ. J. Am. Chem. Soc. 1988; 110: 612
  • 38 Overman LE, Rodriguez-Campos IM. Synlett 1992; 995
  • 39 Overman LE, Sarkar AK. Tetrahedron Lett. 1992; 33: 4103
  • 40 Overman LE, Robinson LA, Zablocki J. J. Am. Chem. Soc. 1992; 114: 368
  • 41 Lin N.-H, Overman LE, Rabinowitz MH, Robinson LA, Sharp MJ, Zablocki J. J. Am. Chem. Soc. 1996; 118: 9062
  • 42 Caderas C, Lett R, Overman LE, Rabinowitz MH, Robinson LA, Sharp MJ, Zablocki J. J. Am. Chem. Soc. 1996; 118: 9073
  • 43 Murata Y, Overman LE. Heterocycles 1996; 42: 549
  • 44 Li R.-H, Ding C.-K, Jiang Y.-N, Ding Z.-C, An X.-M, Tang H.-T, Jing Q.-W, Zhan Z.-P. Org. Lett. 2016; 18: 1666
  • 45 Mittapalli RR, Guesné SJ. J, Parker RJ, Klooster WT, Coles SJ, Skidmore J, Dobbs AP. Org. Lett. 2019; 21: 350
  • 46 Gesson JP, Jacquesy JC, Rambaud D. Tetrahedron Lett. 1992; 33: 3633
  • 47 Carballo RM, Ramírez MA, Rodríguez ML, Martin VS, Padrón JI. Org. Lett. 2006; 8: 3837
  • 48 Miranda PO, Carballo RM, Ramírez MA, Martin VS, Padrón JI. ARKIVOC 2007; (iv): 331
  • 49 Zhu C, Ma S. Angew. Chem. Int. Ed. 2014; 53: 13532
  • 50 Hanessian S, Tremblay M, Marzi M, Del Valle JR. J. Org. Chem. 2005; 70: 5070
  • 51 Gharpure SJ, Shelke YG, Kumar DP. Org. Lett. 2015; 17: 1926
  • 52 Das M, Saikia AK. J. Org. Chem. 2018; 83: 6178
  • 53 Gharpure SJ, Prasath V, Kumar V. Chem. Commun. 2015; 51: 13623
  • 54 Gharpure SJ, Prasath V. J. Chem. Sci. 2011; 123: 943
  • 55 Metais E, Overman LE, Rodriguez MI, Stearns BA. J. Org. Chem. 1997; 62: 9210
  • 56 Ma D, Zhong Z, Liu Z, Zhang M, Xu S, Xu D, Song D, Xie X, She X. Org. Lett. 2016; 18: 4328
  • 57 Bélanger G, Dupuis M, Larouche-Gauthier R. J. Org. Chem. 2012; 77: 3215
  • 58 Wang Y, Zhu L, Zhang Y, Hong R. Angew. Chem. Int. Ed. 2011; 50: 2787