Synlett 2020; 31(12): 1147-1157
DOI: 10.1055/s-0039-1690861
account
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Ruthenium-Catalyzed Carbene/Alkyne Metathesis (CAM) Transformations

Damián Padín
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: carlos.saa@usc.es
,
,
Carlos Saá
› Author Affiliations
This work has received financial support from the Ministerio de Economía y Competitividad (MINECO, projects CTQ2017-87939R and ORFEO-CINQA network RED2018-102387-T), the Xunta de Galicia (project ED431C 2018/04 and Centro singular de investigación de Galicia accreditation 2019–2022, ED431G 2019/03) and the European Union (European Regional Development Fund, ERDF). D.P. thanks the Ministerio de Educación, Cultura y Deporte for a predoctoral FPU fellowship (Grant Number FPU15/02132).
Further Information

Publication History

Received: 17 February 2020

Accepted after revision: 02 March 2020

Publication Date:
31 March 2020 (online)


Abstract

Carbene intermediates have shown versatile applications in modern synthetic chemistry. Catalytic ruthenium carbene/alkyne metathesis (CAM) with readily available substrates renders an efficient procedure for the in situ generation of ruthenium vinyl carbene intermediates. Here, recent advances in synthetic applications of ruthenium-catalyzed carbene/alkyne metathesis (CAM) are highlighted.

1 Introduction

2 Ruthenium Vinyl Carbenes through Carbene/Alkyne Metathesis (CAM)

3 Nonpolar Transformations of Ruthenium Vinyl Carbenes

4 Polar Transformations of Ruthenium Vinyl Carbenes

4.1 Intramolecular Ruthenium-Catalyzed [1,5]- and [1,6]-Hydride Transfer/Cyclization

4.2 Heterocyclizations of Alkynals and Alkynones

4.3 Heterocyclizations of ortho-(Alkynyloxy)benzylamines

5 DFT Studies on the Stereoselectivity of the CAM Reaction

6 Conclusions

 
  • References and Notes

    • 1a Dörwald FZ. The Carbon–Metal Double Bond. In Metal Carbenes in Organic Synthesis . Wiley–VCH; Weinheim: 1998: 1
    • 1b Strassner T. Electronic Structure and Reactivity of Metal Carbenes. In Metal Carbenes in Organic Synthesis . Springer; Berlin/Heidelberg: 2004: 1
    • 1c Tonzetich ZJ. Nucleophilic Carbenes of the Chromium Triad. In Contemporary Carbene Chemistry . John Wiley & Sons; Hoboken: 2013. 452
  • 2 Fischer EO, Maasböl A. Angew. Chem., Int. Ed. Engl. 1964; 3: 580
  • 3 Moss RA, Doyle MP. Contemporary Carbene Chemistry . John Wiley & Sons; Hoboken: 2014: 566
    • 4a Hoveyda AH, Malcolmson SJ, Meek SJ, Zhugralin AR. Angew. Chem. Int. Ed. 2010; 49: 34
    • 4b Kotha S, Dipak MK. Tetrahedron 2012; 68: 397
    • 4c Fürstner A. Science 2013; 341: 1357
    • 4d Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
    • 4e Connon SJ, Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
    • 4f Nolan SP, Clavier H. Chem. Soc. Rev. 2010; 39: 3305
    • 4g Kress S, Blechert S. Chem. Soc. Rev. 2012; 41: 4389
    • 4h Grubbs RH. Tetrahedron 2004; 60: 7117
    • 4i Diver ST, Giessert AJ. Chem. Rev. 2004; 104: 1317
    • 4j Katz TJ. Angew. Chem. Int. Ed. 2005; 44: 3010
    • 4k Li J, Lee D. Eur. J. Org. Chem. 2011; 4269
    • 4l Diver ST. Coord. Chem. Rev. 2007; 251: 671
    • 5a Masuda T, Higashimura T. Acc. Chem. Res. 1984; 17: 51
    • 5b Katz TJ, Sivavec TM. J. Am. Chem. Soc. 1985; 107: 737
    • 5c Fox HH, Wolf MO, O'Dell R, Lin BL, Schrock RR, Wrighton MS. J. Am. Chem. Soc. 1994; 116: 2827
  • 6 Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
  • 7 Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. Wiley; New York: 1998: 652
    • 8a DeAngelis A, Panish R, Fox JM. Acc. Chem. Res. 2016; 49: 115
    • 8b Qian D, Zhang J. Chem. Soc. Rev. 2015; 44: 677
    • 8c Archambeau A, Miege F, Meyer C, Cossy J. Acc. Chem. Res. 2015; 48: 1021
    • 8d Wei F, Song C, Ma Y, Zhou L, Tung C.-H, Xu Z. Sci. Bull. 2015; 60: 1479
    • 8e Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
    • 8f Dorel R, Echavarren AM. J. Org. Chem. 2015; 80: 7321
    • 8g Hu F, Xia Y, Ma C, Zhang Y, Wang J. Chem. Commun. 2015; 51: 7986
    • 8h Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
  • 9 Dey S, De Sarkar S. Adv. Synth. Catal. 2017; 359: 2709
  • 10 Pei C, Zhang C, Qian Y, Xu X. Org. Biomol. Chem. 2018; 16: 8677
    • 11a O'Connor JM, Ji H, Iranpour M, Rheingold AL. J. Am. Chem. Soc. 1993; 115: 1586
    • 11b O’Connor JM, Baldridge KK, Vélez CL, Rheingold AL, Moore CE. J. Am. Chem. Soc. 2013; 135: 8826
    • 11c Holland RL, Bunker KD, Chen CH, DiPasquale AG, Rheingold AL, Baldridge KK, O’Connor JM. J. Am. Chem. Soc. 2008; 130: 10093
  • 12 Li RT, Nguyen ST, Grubbs RH, Ziller JW. J. Am. Chem. Soc. 1994; 116: 10032
  • 13 Nowlan DT, Singleton DA. J. Am. Chem. Soc. 2005; 127: 6190
    • 14a Cambeiro F, Martínez-Núñez E, Varela JA, Saá C. ACS Catal. 2015; 5: 6255
    • 14b Lippstreu JJ, Straub BF. J. Am. Chem. Soc. 2005; 127: 7444
  • 15 Le Paih J, Derien S, Oezdemir I, Dixneuf PH. J. Am. Chem. Soc. 2000; 122: 7400
  • 16 Vovard-Le Bray C, Derien S, Dixneuf PH. C. R. Chim. 2010; 13: 292
  • 17 Le Paih J, Vovard-Le Bray C, Derien S, Dixneuf PH. J. Am. Chem. Soc. 2010; 132: 7391
  • 18 Vovard-Le Bray C, Derien S, Dixneuf PH. Angew. Chem. Int. Ed. 2009; 48: 1439
    • 19a Monnier F, Castillo D, Derien S, Toupet L, Dixneuf PH. Angew. Chem. Int. Ed. 2003; 42: 5474
    • 19b Monnier F, Vovard-Le Bray C, Castillo D, Aubert V, Derien S, Dixneuf PH, Toupet L, Ienco A, Mealli C. J. Am. Chem. Soc. 2007; 129: 6037
    • 20a Bray CV.-L, Klein H, Dixneuf PH, Macé A, Berrée F, Carboni B, Dérien S. Adv. Synth. Catal. 2012; 354: 1919
    • 20b Eckert M, Monnier F, Shchetnikov GT, Titanyuk ID, Osipov SN, Toupet L, Derien S, Dixneuf PH. Org. Lett. 2005; 7: 3741
    • 20c Eckert M, Moulin S, Monnier F, Titanyuk ID, Osipov SN, Roisnel T, Dérien S, Dixneuf PH. Chem. Eur. J. 2011; 17: 9456
  • 21 Vovard-Le Bray C, Derien S, Dixneuf PH, Murakami M. Synlett 2008; 193
    • 22a Godula K, Sames D. Science 2006; 312: 67
    • 22b Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 22c Bergman RG. Nature 2007; 446: 391
    • 22d Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 22e Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 22f Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 23a Wang L, Xiao J. Adv. Synth. Catal. 2014; 356: 1137
    • 23b Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
  • 24 Cambeiro F, López S, Varela JA, Saá C. Angew. Chem. Int. Ed. 2012; 51: 723
  • 25 Alkynols do not undergo CAM processes since the diazo compound is immediately trapped with the hydroxyl group.
  • 26 Cambeiro F, López S, Varela JA, Saá C. Angew. Chem. Int. Ed. 2014; 53: 5959
  • 28 Zhang D.-Y, Zhu F.-L, Wang Y.-H, Hu X.-H, Chen S, Hou C.-J, Hu X.-P. Chem. Commun. 2014; 50: 14459
  • 29 Padín D, Cambeiro F, Fañanás-Mastral M, Varela JA, Saá C. ACS Catal. 2017; 7: 992
  • 30 In general, amines, as good nucleophiles, have the tendency to trap immediately the diazo compound used, both in intra- and intermolecular processes, avoiding CAM processes.
  • 31 González-Rodríguez C, Suárez JR, Varela JA, Saá C. Angew. Chem. Int. Ed. 2015; 54: 2724