Synthesis 2020; 52(13): 1981-1990
DOI: 10.1055/s-0039-1690855
paper
© Georg Thieme Verlag Stuttgart · New York

Potassium Periodate Mediated Oxidative Cyclodesulfurization toward Benzofused Nitrogen Heterocycles

Chuthamat Duangkamol
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
,
Wong Phakhodee
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
b   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: Mookdap55@gmail.com
,
Mookda Pattarawarapan
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
b   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: Mookdap55@gmail.com
› Author Affiliations
This work was supported by The Thailand Research Fund through the Royal Golden Jubilee Ph.D. Programme (Grant No. PHD/0086/2557) to C.D. This research work was also partially supported by Chiang Mai University and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, Thailand.
Further Information

Publication History

Received: 02 January 2020

Accepted after revision: 26 February 2020

Publication Date:
16 March 2020 (online)


Abstract

A convenient oxidative cyclodesulfurization method toward the synthesis of benzofused nitrogen heterocycles using inexpensive and readily available potassium periodate as an oxidant was developed. Upon treating isothiocyanates with ortho-substituted anilines bearing N,N-, N,O-, and N,S-bis-nucleophiles, followed by an intramolecular cyclization of the in situ generated monothioureas, substituted 2-aminobenzazole series were rapidly accessible in good to excellent yields. The protocol can accommodate various substituents on both substrates while allowing more efficient, greener, and operational simpler process relative to other oxidative coupling reactions. Tetracyclic quinazolinone derivatives were also afforded in high yields in a single preparative step and chromatography-free.

Supporting Information

 
  • References

  • 1 Ramachandran S, Hameed PS, Srivastava A, Shanbhag G, Morayya S, Rautela N, Awasthy D, Kavanagh S, Bharath S, Reddy J, Panduga V, Prabhakar KR, Saralaya R, Nanduri R, Raichurkar A, Menasinakai S, Achar V, Jimenez-Diaz MB, Martinez MS, Angulo-Barturen I, Ferrer S, Sanz LM, Gamo FJ, Duffy S, Avery VM, Waterson D, Lee MC. S, Coburn-Flynn O, Fidock DA, Iyer PS, Narayanan S, Hosagrahara V, Sambandamurthy VK. J. Med. Chem. 2014; 57: 6642
  • 2 Pancholia S, Dhameliya TM, Shah P, Jadhavar PS, Sridevi JP, Yogeshwari P, Sriram D, Chakraborti AK. Eur. J. Med. Chem. 2016; 116: 187
    • 3a Rouan M.-C, Gevers T, Roymans D, de Zwart L, Nauwelaers D, De Meulder M, van Remoortere P, Vanstockem M, Koul A, Simmen K, Andries K. Antimicrob. Agents Chemother. 2010; 54: 4534
    • 3b Massari S, Daelemans D, Barreca ML, Knezevich A, Sabatini S, Cecchetti V, Marcello A, Pannecouque C, Tabarrini O. J. Med. Chem. 2010; 53: 641
    • 4a Lunn WH. W. Patent US4000275A, 1976
    • 4b Lunn WH. W, Harper RW, Stone RL. J. Med. Chem. 1971; 14: 1069
    • 5a Dalla Via L, Gia O, Magno SM, Da Settimo A, Marini AM, Primofiore G, Da Settimo F, Salerno S. Farmaco 2001; 56: 159
    • 5b Pavlov P, Winblad B. Patent WO2017168137A1, 2017
    • 6a Ortega JA, Arencibia JM, La Sala G, Borgogno M, Bauer I, Bono L, Braccia C, Armirotti A, Girotto S, Ganesan A. J. Med. Chem. 2017; 60: 5800
    • 6b An Y, Lee E, Yu Y, Yun J, Lee MY, Kang JS, Kim W.-Y, Jeon R. Bioorg. Med. Chem. Lett. 2016; 26: 3067
    • 6c Lelais G, Epple R, Marsilje TH, Long YO, McNeill M, Chen B, Lu W, Anumolu J, Badiger S, Bursulaya B, DiDonato M, Fong R, Juarez J, Li J, Manuia M, Mason DE, Gordon P, Groessl T, Johnson K, Jia Y, Kasibhatla S, Li C, Isbell J, Spraggon G, Bender S, Michellys P.-Y. J. Med. Chem. 2016; 59: 6671
  • 7 Noel S, Cadet S, Gras E, Hureau C. Chem. Soc. Rev. 2013; 42: 7747
    • 8a Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. J. Med. Chem. 2019; 62: 4265
    • 8b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 9 Holgate ST, Emanuel MB, Howarth PH. J. Allergy Clin. Immunol. 1985; 76: 375
    • 10a Flick AC, Ding HX, Leverett CA, Kyne RE. Jr, Liu KK. C, Fink SJ, O’Donnell CJ. Bioorg. Med. Chem. 2016; 24: 1937
    • 10b Dubey AK, Handu SS, Mediratta PK. J. Pharmacol. Pharmacother. 2015; 6: 118
    • 11a Seth K, Purohit P, Chakraborti AK. Curr. Med. Chem. 2017; 24: 4638
    • 11b Nimnual P, Tummatorn J, Thongsornkleeb C, Ruchirawat S. J. Org. Chem. 2015; 80: 8657
    • 11c Tran LQ, Li J, Neuville L. J. Org. Chem. 2015; 80: 6102
    • 11d Chi Y, Zhang W.-X, Xi Z. Org. Lett. 2014; 16: 6274
    • 11e Lamani M, Prabhu KR. J. Org. Chem. 2011; 76: 7938
    • 11f Liu B, Yin M, Gao H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3009
    • 11g Tankam T, Srisa J, Sukwattanasinitt M, Wacharasindhu S. J. Org. Chem. 2018; 83: 11936
    • 11h Zhu T.-H, Wang S.-Y, Wang G.-N, Ji S.-J. Chem. Eur. J. 2013; 19: 5850
    • 11i Castanheiro T, Suffert J, Gulea M, Donnard M. Org. Lett. 2016; 18: 2588
  • 12 Qian X, Li Z, Song G, Li Z. J. Chem. Res., Synop. 2001; 138
  • 13 Heinelt U, Schultheis D, Jaeger S, Lindenmaier M, Pollex A, Beckmann HS. G. Tetrahedron 2004; 60: 9883
  • 14 Khatik GL, Dube N, Pal A, Nair VA. Synth. Commun. 2011; 41: 2631
  • 15 Ghosh H, Yella R, Nath J, Patel BK. Eur. J. Org. Chem. 2008; 6189
  • 16 Tian Z, Plata DJ, Wittenberger SJ, Bhatia AV. Tetrahedron Lett. 2005; 46: 8341
  • 17 Yadav VK, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2018; 59: 252
  • 18 Wang Z, Zhao Q, Hou J, Yu W, Chang J. Tetrahedron 2018; 74: 2324
  • 19 Phakhodee W, Duangkamol C, Wiriya N, Pattarawarapan M. Tetrahedron Lett. 2016; 57: 5290
  • 20 Murata Y, Matsumoto N, Miyata M, Kitamura Y, Kakusawa N, Matsumura M, Yasuike S. J. Organomet. Chem. 2018; 859: 18
  • 21 Wan Z.-K, Ousman EF, Papaioannou N, Saiah E. Tetrahedron Lett. 2011; 52: 4149
    • 22a Chadi NE, Merouani S, Hamdaoui O, Bouhelassa M, Ashokkumar M. Environ. Sci.: Water Res. Technol. 2019; 5: 1113
    • 22b Sudalai A, Khenkin A, Neumann R. Org. Biomol. Chem. 2015; 13: 4374
    • 22c Litter MI. Introduction to photochemical advanced oxidation processes for water treatment. In Environmental Phorochemmistry, Part II, The Handbook of Environmental Chemistry, Vol. 2. Hutzinger O. Springer; Berlin: 2005: 325-366
  • 23 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 24 Ramadas K, Janarthanan N, Pritha R. Synlett 1997; 1053
    • 25a Pattarawarapan M, Jaita S, Phakhodee W. Tetrahedron Lett. 2016; 57: 3171
    • 25b Pattarawarapan M, Wet-osot S, Yamano D, Phakhodee W. Synlett 2017; 28: 589
    • 25c Pattarawarapan M, Yamano D, Wiriya N, Phakhodee W. J. Org. Chem. 2019; 84: 6516
    • 25d Phakhodee W, Duangkamol C, Wiriya N, Pattarawarapan M. RSC Adv. 2018; 8: 38281
    • 25e Phakhodee W, Duangkamol C, Yamano D, Pattarawarapan M. Synlett 2017; 28: 825
    • 25f Phakhodee W, Wangngae S, Pattarawarapan M. J. Org. Chem. 2017; 82: 8058
    • 25g Wangngae S, Pattarawarapan M, Phakhodee W. J. Org. Chem. 2017; 82: 10331
    • 25h Wet-osot S, Duangkamol C, Phakhodee W, Pattarawarapan M. ACS Comb. Sci. 2016; 18: 279
    • 25i Wet-osot S, Phakhodee W, Pattarawarapan M. J. Org. Chem. 2017; 82: 9923
  • 26 Pourali AR. Monatsh. Chem. 2005; 136: 733
  • 27 Song H, Oh S.-R, Lee H.-K, Han G, Kim J.-H, Chang HW, Doh K.-E, Rhee H.-K, Choo H.-YP. Bioorg. Med. Chem. 2010; 18: 7580
  • 28 Carpenter RD, Lam KS, Kurth MJ. J. Org. Chem. 2007; 72: 284
  • 29 Bleda JA, Fresneda PM, Orenes R, Molina P. Eur. J. Org. Chem. 2009; 2490
  • 30 Chen L, Li C, Bi X, Liu H, Qiao R. Adv. Synth. Catal. 2012; 354: 1773
  • 31 Banerjee A, Subramanian P, Kaliappan KP. J. Org. Chem. 2016; 81: 10424
  • 32 Yang D, Wang Y, Yang H, Liu T, Fu H. Adv. Synth. Catal. 2012; 354: 477
  • 33 Das R, Banerjee M, Rai RK, Karri R, Roy G. Org. Biomol. Chem. 2018; 16: 4243
    • 34a Ruff F, Kucsman A. J. Chem. Soc., Perkin Trans. 2 1985; 683
    • 34b Ruff F, Fabian A, Farkas O, Kucsman A. Eur. J. Org. Chem. 2009; 2102
    • 35a Xue D, Long Y.-Q. J. Org. Chem. 2014; 79: 4727
    • 35b Lai G, Anderson WK. Tetrahedron Lett. 1993; 34: 6849
    • 35c Zhao H, Fu H, Qiao R. J. Org. Chem. 2010; 75: 3311
    • 35d Rivillo D, Gulyas H, Benet-Buchholz J, Escudero-Adan EC, Freixa Z, van Leeuwen PW. N. M. Angew. Chem. Int. Ed. 2007; 46: 7247
    • 35e Shi F, Xu X, Zheng L, Dang Q, Bai X. J. Comb. Chem. 2008; 10: 158
    • 36a Yella R, Patel BK. J. Comb. Chem. 2010; 12: 754
    • 36b Garin J, Melendez E, Merchan FL, Merino P, Orduna J, Tejero T. J. Heterocycl. Chem. 1991; 28: 359
    • 36c Xie Y, Zhang F, Li J, Shi X. Synlett 2010; 901
    • 36d Sorensen US, Strobaek D, Christophersen P, Hougaard C, Jensen ML, Nielsen EO, Peters D, Teuber L. J. Med. Chem. 2008; 51: 7625
    • 36e Kuzmierkiewicz W, Tyczynska B. Acta Pol. Pharm. 1980; 37: 39
    • 36f Cee VJ, Downing NS. Tetrahedron Lett. 2006; 47: 3747
    • 36g Kondraganti L, Manabolu S. b, Dittakavi R. ChemistrySelect 2018; 3: 11744
    • 36h Vlaar T, Cioc RC, Mampuys P, Maes BU. W, Orru RV. A, Ruijter E. Angew. Chem. Int. Ed. 2012; 51: 13058
    • 36i Zhang X, Jia X, Wang J, Fan X. Green Chem. 2011; 13: 413
    • 36j Swelam SA.-S, Abu-Bakr SM. Heterocycl. Commun. 2008; 14: 115
    • 36k Mishra N, Singh AS, Agrahari AK, Singh SK, Singh M, Tiwari VK. ACS Comb. Sci. 2019; 21: 389
    • 36l Liao Z.-Y, Yeh W.-H, Liao P.-Y, Liu Y.-T, Chen Y.-C, Chen Y.-H, Hsieh T.-H, Lin C.-C, Lu M.-H, Chen Y.-S, Hsu M.-C, Li T.-K, Chien T.-C. Org. Biomol. Chem. 2018; 16: 4482
    • 36m Ren Z.-L, Kong H.-H, Lu W.-T, Sun M, Ding M. W. Tetrahedron 2018; 74: 184
    • 36n Sam J, Plampin JN. J. Pharm. Sci. 1964; 53: 538