Synthesis 2020; 52(02): 208-218
DOI: 10.1055/s-0039-1690749
feature
© Georg Thieme Verlag Stuttgart · New York

Direct Transformation of Propargylic Alcohols and O,O-Diethyl Phosphorothioic Acid into S-(2H-Chromen-4-yl) Phosphorothioates

Xian-Rong Song
,
Tao Yang
,
Haixin Ding
,
Qiang Xiao
Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Jiangxi Province, Nanchang 330013, P. R. of China   Email: xiaoqiang@tsinghua.org.cn
› Author Affiliations
National Science Foundation of China (No. 21676131 and No. 21462019), the Science Foundation of Jiangxi Province (20181BAB203005 and 20143ACB20012), the Education Department of Jiangxi Province (GJJ180616), Jiangxi Science & Technology Normal University (2017QNBJRC004).
Further Information

Publication History

Received: 23 September 2019

Accepted after revision: 31 October 2019

Publication Date:
14 November 2019 (online)


Abstract

An environmentally benign and efficient method has been successfully developed to generate S-(2H-chromen-4-yl) phosphorothioates from easily available 2-(3-hydroxyprop-1-ynyl)phenols and O,O-diethyl phosphorothioic acid [(EtO)2P(O)SH] with water as the only byproduct. The reaction proceeds smoothly in moderate to excellent yields. It is noted that (EtO)2P(O)SH acts not only as an acid promoter, but also as the nucleophile to attack the allenic carbocation intermediate.

Supporting Information

 
  • References

    • 1a Ding M, Zhou F, Liu YL, Wang CH, Zhao XL, Zhou J. Chem. Sci. 2011; 2: 2035
    • 1b Khoo KK, Norton RS. In Amino Acids, Peptides and Proteins in Organic Chemistry . Hughes AB. Wiley-VCH; Weinheim: 2011: 395
    • 1c Yamaguchi K, Sakagami K, Miyamoto Y, Jin X, Mizuno N. Org. Biomol. Chem. 2014; 12: 9200
    • 1d Murdock LL, Hopkins TL. J. Agric. Food Chem. 1968; 16: 954
    • 1e Hadaway AB, Barlow F, Turner CR, Flower LS. Pestic. Sci. 1977; 8: 172
    • 1f Konecny V, Kovac S. Pestic. Sci. 1978; 9: 571
    • 1g Leader H, Casida JE. J. Agric. Food Chem. 1982; 30: 546
    • 2a Schrader G. US 2597534, 1952
    • 2b Johnston F. US 2616918, 1952
    • 2c Xie R, Zhao Q, Zhang T, Fang J, Mei X, Ning J, Tang Y. Bioorg. Med. Chem. 2013; 21: 278
    • 3a Cogoi S, Rapozzi V, Quadrifoglio F, Xodo L. Biochemistry 2001; 40: 1135
    • 3b Li NS, Frederiksen JK, Piccirilli JA. Acc. Chem. Res. 2011; 44: 1257
    • 3c Sekine M, Hata T. J. Am. Chem. Soc. 1986; 108: 4581
    • 3d Sekine M, Hata T. J. Am. Chem. Soc. 1983; 105: 2044
    • 4a Ozturk DH, Park I, Colman RF. Biochemistry 1992; 31: 10544
    • 4b Hendrickson HS, Hendrickson EK, Johnson JL, Khan TH, Chial HJ. Biochemistry 1992; 31: 12169
    • 4c Wrzeszczynski KO, Colman RF. Biochemistry 1994; 33: 11544
    • 4d Madhusoodanan KS, Colman RF. Biochemistry 2001; 40: 1577
    • 4e Vollmer SH, Walner MB, Tarbell KV, Colman RF. J. Biol. Chem. 1994; 269: 8082
    • 4f Ruman T, Długopolska K, Jurkiewicz A, Rut D, Fraçzyk T, Cieśla J, Leś A, Szewczuk Z, Rode W. Bioorg. Chem. 2010; 38: 74
    • 4g Hotoda H, Koizumi M, Koga R, Kaneko M, Momota K, Ohmine T, Furukawa H, Agatsuma T, Nishigaki T, Sone J, Tsutsumi S, Kosaka T, Abe K, Kimura S, Shimada K. J. Med. Chem. 1998; 41: 3655
  • 5 Jones DJ, O’Leary EM, O’Sullivan TP. Tetrahedron Lett. 2018; 59: 4279
  • 6 Klunder JM, Barry SK. J. Org. Chem. 1987; 52: 2598
    • 7a Au-Yeung TL, Chan KY, Chan WK, Haynes RK, Williams ID, Yeung LL. Tetrahedron Lett. 2001; 42: 453
    • 7b Kaboudin B. Tetrahedron Lett. 2002; 43: 8713
    • 7c Renard PY, Schwebel H, Vayron P, Josien L, Valleix A, Mioskowski C. Chem. Eur. J. 2002; 8: 2910
    • 7d Gao YX, Tang G, Cao Y, Zhao YF. Synthesis 2009; 1081
    • 7e Bai J, Cui XL, Wang H, Wu YJ. Chem. Commun. 2014; 50: 8860
    • 8a He W, Wang ZM, Li XJ, Yu Q, Wang ZW. Tetrahedron 2016; 72: 7594
    • 8b Zhang X, Wang D, An D, Han B, Song X, Li L, Zhang G, Wang L. J. Org. Chem. 2018; 83: 1532
    • 9a Wang JC, Huang X, Ni ZQ, Wang SC, Pan YJ, Wu J. Tetrahedron 2015; 71: 7853
    • 9b Zhu YY, Chen TQ, Li S, Shimada S, Han LB. J. Am. Chem. Soc. 2016; 138: 5825
    • 9c He W, Hou X, Li X, Song L, Yu Q, Wang Z. Tetrahedron 2017; 73: 3133
    • 9d Sun J, Weng WZ, Li P, Zhang B. Green Chem. 2017; 19: 1128
    • 9e Sun JG, Yang H, Li P, Zhang B. Org. Lett. 2016; 18: 5114
    • 9f Wang J, Huang X, Ni XZ, Wang S, Wu J, Pan Y. Green Chem. 2015; 17: 314
    • 10a Harveyh R, Jacobson E, Jensen E. J. Am. Chem. Soc. 1963; 85: 1623
    • 10b Arisawa M, Ono T, Yamaguchi M. Tetrahedron Lett. 2005; 46: 5669
    • 10c Panmand DS, Tiwari AD, Panda SS, Monbaliu JC. M, Beagle LK, Asiri AM, Stevens CV, Steel PJ, Hall CD, Katritzky AR. Tetrahedron Lett. 2014; 55: 5898
    • 10d Kumaraswamy G, Raju R. Adv. Synth. Catal. 2014; 356: 2591
    • 10e Xu J, Zhang L, Li X, Gao Y, Tang G, Zhao Y. Org. Lett. 2016; 18: 1266
    • 10f Zhang L, Zhang P, Li X, Xu J, Tang G, Zhao Y. J. Org. Chem. 2016; 81: 5588
    • 10g Zhang X, Shi Z, Shao C, Zhao J, Wang D, Zhang G, Li L. Eur. J. Org. Chem. 2017; 1884
    • 11a Han X, Wu J. Org. Lett. 2010; 12: 5780
    • 11b Han X, Zhang Y, Wu J. J. Am. Chem. Soc. 2010; 132: 4104
    • 11c Guo B, Njardarson JT. Chem. Commun. 2013; 49: 10802
    • 11d Robertson FJ, Wu J. J. Am. Chem. Soc. 2012; 134: 2775
    • 11e Guo B, Vitaku E, Njardarson JT. Tetrahedron Lett. 2014; 55: 3232
    • 11f Łopusiński A. Phosphorus, Sulfur Silicon Relat. Elem. 1990; 47: 383
    • 11g Grounds H, Ermanis K, Newgas SA, Porter MJ. J. Org. Chem. 2017; 82: 127
    • 12a Kabachnik MI, Matrukova TA, Shipv AE, Melenyeva TA. Tetrahedron 1960; 9: 10
    • 12b Olah GA, McFarland CW. J. Org. Chem. 1975; 40: 2582
    • 13a Song X.-R, Han Y.-P, Qiu Y.-F, Qiu Z.-H, Liu X.-Y, Xu P.-F, Liang Y.-M. Chem. Eur. J. 2014; 20: 12046
    • 13b Song X.-R, Song B, Qiu Y.-F, Han Y.-P, Qiu Z.-H, Hao X.-H, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2014; 79: 7616
    • 13c Song X.-R, Qiu Y.-F, Song B, Hao X.-H, Han Y.-P, Gao P, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2015; 80: 2263
    • 13d Li R, Song X.-R, Chen X, Ding H, Xiao Q, Liang Y.-M. Tetrahedron Lett. 2017; 58: 3049
    • 13e Song X.-R, Li R, Ding H, Chen X, Yang T, Bai J, Xiao Q, Liang Y.-M. Org. Chem. Front. 2018; 5: 1537

      For reviews on the use of propargylic alcohols see:
    • 14a Muzart J. Tetrahedron 2008; 64: 5815
    • 14b Kabalka GW, Yao ML. Curr. Org. Synth. 2008; 5: 28
    • 14c Zhang L, Fang G, Kumar RK, Bi X. Synthesis 2015; 47: 2317
    • 14d Zhu Y, Sun L, Lu P, Wang Y. ACS Catal. 2014; 4: 1911
    • 14e Song X.-R, Qiu Y.-F, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2016; 14: 11317
  • 15 CCDC 1943493 (compound 3f) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    • 16a Kazuo H, Katsuki H, Mitsuo H, Masaru N, Kenji T, Masaaki Y. JP 48018461, 1973
    • 16b Masahiro A. JP 53095946, 1978
  • 17 Ash J, Huang H, Kang JY. Org. Biomol. Chem. 2019; 17: 3812
    • 18a Zhang H, Tanimoto H, Morimoto T, Nishiyama Y, Kakiuchi K. Org. Lett. 2013; 15: 5222
    • 18b Li R, Jin F, Song X.-R, Yang T, Ding H, Yang R, Xiao Q, Liang Y.-M. Tetrahedron Lett. 2019; 60: 331
    • 18c Zhu Y, Yin G, Hong D, Lu P, Wang Y. Org. Lett. 2011; 13: 1024