Syntheses of Pyrazine-, Quinoxaline-, and Imidazole-Fused Pyrroline Nitroxides

Mostafa Isbera a
Balázs Bognár a
Gergely Gulyás-Fekete b
Kristina Kish a
Támas Kálaí a, c

a Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szügetti st. 12, 7624 Pécs, Hungary
tamas.kalai@aok.pte.hu
b Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szügetti st. 12, 7624 Pécs, Hungary
c Szentágothai Research Centre, Ifjúság st. 20, 7624 Pécs, Hungary

Dedicated to the memory of Prof. Kálmán Hideg

Received: 08.08.2019
Accepted after revision: 21.08.2019
Published online: 13.09.2019

Abstract
A synthesis of a new diamagnetic synthon, 1-methoxy-2,2,5,5-tetramethylpyrrolidine-3,4-dione, was developed. Condensation of this compound with aliphatic or aromatic 1,2-diamines followed by deprotection yielded pyrroline nitroxide-fused pyrazines, pteridines, or quinoxalines, demonstrated on 7 examples in 15–39% overall yield over 2 or 3 steps. Reaction of the diamagnetic 1,2-diketone with an aldehyde and ammonium acetate produced a pyrrolo[3,4-d]imidazole scaffold in the Debus–Radziszewski reaction.

Key words free radicals, CH functionalization, oxidation, pyrazines, protecting groups

One of the main groups of long-lived stable radicals is the nitroxide (aminoxyl) radicals.1 Extensive studies of stable nitroxide free radicals first appeared 60 years ago, and their application is rather diverse and extends beyond spin labeling.2 They are used as co-oxidants in organic chemistry,3 building blocks for magnetic materials,4 superoxide dismutase mimics,5 antiproliferative compounds,6 mediators of polymerization,7 redox active materials in batteries,8 and magnetic resonance imaging (MRI)9 as well as electron paramagnetic resonance imaging (EPR)10 contrast agents. These applications demand various scaffolds with diverse substitution patterns on pyrroline and piperidine nitroxides, including condensation with miscellaneous carbocycles and heterocycles. Synthesis of pyrroline nitroxide-fused carbocycles and heterocycles is one of the main activities of our laboratory, such as the synthesis of pyridazine-1 and pyrimidine-fused12 nitroxides (Figure 1). The latter was used in environmental studies investigating the distribution of sulfadiazine in a humic acid model system.13

Until now, we could not find a method for the synthesis of pyrazine (1,4-diazine)-fused pyrroline nitroxide. Pyrazines are important structural motifs of many biologically active molecules, such as riboflavin, and drugs such as pyrazinamide (antituberculotics) and varenicline (stop-smoking drug) (Figure 2).

It was obvious that the condensation of 1,2-diamines with paramagnetic 1,2-diketones suggests a synthetic route to novel paramagnetic 1,4-diazines and quinoxalines.14,15 Inspired by the work of Sandris and Ourisson,16 we attempted the synthesis of 1-oxyl-2,2,5,5-tetramethylpyrrolidine-3,4-dione by SeO2 oxidation of 1-oxyl-2,2,5,5-tetramethylpyrrolidine-3-one (1)17 (Scheme 1); however, no reaction occurred, and only starting material was recovered.

Based on our previous findings regarding sluggish reactions, we proposed that the free radical moiety must be protected; however, neither the N-OAc protection18 nor the hydroxylamine HCl salt form was sufficient for camouflaging
the nitroxide moiety in the oxidation reaction with SeO₂. For nitroxide protection, we used the O-methylation technique by a Fenton reaction in the presence of DMSO, which was worked out in Bottle’s group. Treatment of compound 1 with a methyl radical generating system (Fe²⁺ and aq H₂O₂ mixture in DMSO) yielded compound 2, which could be oxidized smoothly by refluxing with 1.5 equivalents of SeO₂ in AcOH to afford compound 3 in a 63% yield over two steps (Scheme 2). Deprotection of compound 3 with 3-chloroperbenzoic acid (m-CPBA) gave an unstable five-membered diketo nitroxide compound, which decomposed during purification.

Alternatively, we returned to the Sandris and Ourisson method, but instead of an N-acetyl derivative, the NH functionality was protected with a readily hydrolyzable trifluoroacetyl group, and thus, compound 4 was treated with trifluoroacetic anhydride to give compound 5 in an 82% yield. Compound 5 could also be oxidized to diketo compound 6 in a 65% yield with SeO₂ in AcOH, but it was unstable and the crude product was used immediately in the next step. The diketo compounds 3 and 6 were condensed with 1,2-diaminobenzenes (7a) to furnish pyrrolo[3,4-b]quinazolines 7b and 8, respectively. Treatment of compound 7b with m-CPBA in dichloromethane (DCM) yielded nitroxide 7c. Compound 7c was also available via hydrolysis of compound 8 with aqueous KOH in EtOH, which produced compound 9 with prolonged reaction time and in a low (32%) yield. Compound 9 was then oxidized with m-CPBA in DCM to furnish 7c in a 13% yield over three steps (Scheme 3).

Considering the instability of the diketo compound 6 and the fact that the deprotection of the sterically hindered trifluoroacetamido group required harsh basic conditions, which is not compatible with many functional groups and its troublesome application (reduction of nitroxide, trifluoroacetylation, oxidation, condensation, hydrolysis of the trifluoroacetetyl group, and restoring nitroxide function), in the following work, we used the O-methylation procedure, followed by oxidation, condensation, and mild deprotection with m-CPBA. Thus, we preferred compound 3 as the main building block instead of compound 6. In analogous reactions, compound 3 was condensed with different aromatic and heteroaromatic 1,2-diamino compounds such as 2,3-diaminobenzamide (10a), 1,2,4,5-tetraaminobenzenes (11a), 4,5-diaminopirimidine (12a), 5,6-diaminouracil (13a) in ethanol, glacial acetic acid, or aqueous methanol to give the pyrazine ring condensed polycyclic compounds 10b, 11b, 12b, and 13b, respectively. Deprotection of 10b with m-CPBA gave the paramagnetic 5-carboxamidoquinoloxaline 10c, which can be regarded as a potential poly (ADP-ribose) polymerase (PARP) inhibitor, and deprotection of compound 11b offered the rigid biradical compound 11c giving a quintet line in the EPR spectrum [see the Supporting Information (SI)]. Deprotection of compound 12b furnished the paramagnetic peridine 12c, and deprotection of compound 13b offered the paramagnetic peridine-2,4(3H,8H)-dione 13c, the spin-labeled (SL) lumazine (Table 1).
To construct the pyrrolo[3,4-b]pyrazine scaffold, compound 3 was condensed with 1,2-diaminoethane (14) yielding compound 15. Aromatization of 15 by treatment with 2.0 equivalents of sodium ethoxide in methanol at reflux temperature24 followed by standing overnight yielded the pyrazine-condensed precursor 16, which was deprotected with m-CPBA to give compound 17 in a 30% yield over three steps. Upon prolonged reaction time and excess m-CPBA (5.0 equiv) the formation of N-oxide 18 was observed, which could be arylated at the C2-position by palladium catalysis25 with benzene as a reaction solvent to give compound 19 in a 38% yield (Scheme 4).

To achieve the paramagnetic analogue of the antitubercular drug pyrazinamide,26 a condensation reaction of compound 3 was conducted with ethyl 2,3-diaminopropionic acid HCl salt 20 in EtOH with 4.0 equivalents of sodium.

Table 1 Synthesis of Pyrazine Condensed Paramagnetic Polycyclic Compounds

<table>
<thead>
<tr>
<th>Entry</th>
<th>1,2-Diamino compound</th>
<th>Diamagnetic product</th>
<th>Paramagnetic product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10a</td>
<td>10b</td>
<td>10c</td>
</tr>
<tr>
<td>2</td>
<td>11a</td>
<td>11b</td>
<td>11c</td>
</tr>
<tr>
<td>3</td>
<td>12a</td>
<td>12b</td>
<td>12c</td>
</tr>
<tr>
<td>4</td>
<td>13a</td>
<td>13b</td>
<td>13c</td>
</tr>
</tbody>
</table>

a Reflux in AcOH,
b Reflux in MeOH–H2O.

Scheme 4 Synthesis of diamagnetic and paramagnetic pyrrolo[3,4-b]pyrazine scaffolds and its CH functionalization
ethoxide to furnish compound 21. Its hydrolysis with NaOH to the carboxylic acid and the treatment of the crude product with 1,1′-carbonyldimidazole (CDI) in THF followed by treatment with aqueous 25% ammonia gave amide 22. Treatment of compound 22 with m-CPBA gave the spin-labeled analogue 23 of pyrazinamide in an 11% overall yield over four steps (Scheme 5).

In order to extend the scope of utilization of compound 3, we tested it in a multicomponent Debú–Radziszewski imidazole formation with modification of the Fallah and Mokhtary method utilizing tin oxide nanoparticles as catalysts. Therefore, compound 3, benzaldehyde (24), and ammonium acetate in the presence of SnO2 nanoparticles were heated at reflux temperature for 3 hours in EtOH. After the isolation of compound 25 in a 75% yield, we attempted the deprotection to nitroxide with m-CPBA, but the formation of (4,4,6,6-tetramethyl-2-phenyl-4,6-dihydropyrrolo[3,4-d]imidazol-5-yl)oxadanyl was not observed. Considering, that Chalmers et al. reported a similar deprotection on N-deprotection cannot be conducted seemingly in the presence of NaH by alkylation. Therefore, treatment of 25 with Mel in THF in the presence of NaH furnished compound 26, which can be deprotected to afford 1-methylimidazole-fused pyrrole nitroxide 27 in 44% yield in two steps (Scheme 6).

In conclusion, we have developed access to 1-methoxy-2,2,5,5-tetramethylpyrrolidin-3-one (2) and other structures, including the synthesis of diamagnetic and paramagnetic 1-methyl-2-phenyl-4,6-dihydropyrrolo[3,4-d]imidazole scaffold.

Melting points were determined with a Boetius micro-melting point apparatus and are uncorrected. Elemental analyses (C, H, N, and S) were performed with a Fisons EA 1110 CHNS elemental analyzer. Mass spectra were recorded on a ThermoQuest AutoMass Multi spectrometer. NMR spectra were recorded on a Bruker Avance III Ascend 500 spectrometer; chemical shifts are referenced to TMS. The paramagnetic compounds were reduced to N-hydroxylamines with five equivalents of hydrazobenzene (DPPH)/radicals in situ in the NMR tube. Measurements were performed at a probe temperature 298 K in CDCl3 or DMSO-d6 or CD3OD solution. ESR spectra were recorded on Miniscope MS 200 in CHCl3 solution. All monoradicals gave a triplet line at aH = 14.5 G, biradical 11c gave a quartet line at aH = 7.3 G. IR spectra were recorded with a Bruker Alpha FT-IR instrument with ATR support (ZnSe plate). Flash column chromatography was performed on Merck Kieselgel 60 (0.040–0.063 mm). Compounds 1, 4, 10a, 11a, 11c, and 20 were prepared as described previously. Compounds 7a, 10a–13a, 14, 24 and other reagents were purchased from Merck, Alfa Aesar, and TCI.

1-Methoxy-2,2,5,5-tetramethylpyrrolidin-3-one (2)

To a stirred solution of 1 (1.56 g, 10.0 mmol) and FeSO4·7H2O (6.9 g, 25.0 mmol) in DMSO (30 mL) at 0 °C was added 30% aq H2O2 (5 mL) dropwise over 2 h. The reaction was monitored by TLC. Upon consumption of the starting material, distilled H2O (50 mL) was added and the aqueous solution was extracted with Et2O (3 × 30 mL). The combined organic phases were dried (MgSO4), filtered, and evaporated, and the crude product was purified by flash column chromatography (hexane–EtOAc, 2:1) to give 2 as a colorless oil; yield: 1.28 g (75%); Rf = 0.58 (hexane–EtOAc 2:1).

IR (neat): 2972, 2940, 1751 cm–1.

1H NMR (500 MHz, CDCl3): δ = 3.72 (s, 3 H, OCH3), 2.34 (s, 2 H, CH2), 1.29 (s, 6 H, 2 × CH3), 1.26 (s, 6 H, 2 × CH3).

13C NMR (125 MHz, CDCl3): δ = 216.3 (C=O), 67.2 (C), 65.2 (CH2), 61.2 (OCH3), 49.76 (C), 31.59 (2 × CH3), 22.65 (2 × CH3).

MS (EI): m/z (%) = 171 (3, [M]+), 156 (25), 70 (48), 42 (100).
2,2,5,5-Tetramethyl-1-trifluoroacetylpyrrolidin-3-one (5)
To a stirred solution of a mixture of 4 (1.2 g, 8.5 mmol) and Et3N (1.01 g, 10.0 mmol) in DCM (20 mL) was added CF3CO2H (2.1 g, 10.0 mmol) in DCM (5 mL) dropwise at 0 °C and the solution was refluxed for 1 h. After cooling, the mixture was diluted with distilled H2O (20 mL) and the organic phase was separated. It was then dried (MgSO4), filtered, evaporated, and the crude product was purified by flash column chromatography (hexane–EtOAc 2:1) to give 5 as a yellow oil; yield: 1.64 g (82%); Rf = 0.51 (hexane–EtOAc 2:1).

IR (neat): 1762, 1666 cm–1.
1H NMR (500 MHz, CDCl3): δ = 2.68 (s, 2 H, CH2), 1.64 (s, 6 H, 2 × CH3), 1.58 (s, 6 H, 2 × CH3).

13C NMR (125 MHz, CDCl3): δ = 128.9 (2 × CH), 129.9 (2 × CH), 129.3 (2 × CH), 119.4 (CF3, q, 285.2 Hz), 143.4 (2C), 129.9 (2 × CH), 129.3 (2 × CH), 119.4 (CF3, q, 285.2 Hz), 67.6 (2C), 27.7 (4 × CH2).

MS (EI): m/z (%) = 237 (41, [M]+), 222 (48), 154 (50), 69 (91), 42 (100).

Analytical data for 2,2,5,5-tetramethyl-1-trifluoroacetylpyrrolidin-3-one (5)

Oxidation of Compounds 2 and 5 with SeO2; General Procedure
A solution of compound 2 or 5 (7.0 mmol) in glacial AcOH (10 mL) was added SeO2 (1.16 g, 10.5 mmol) and the mixture was refluxed for 1 h. After cooling, the mixture was diluted with distilled H2O (10 mL), and filtered through a Celite pad. The pad was then washed with EtOAc (2 × 50 mL). The combined organic layers were dried (MgSO4), filtered, and evaporated to give 3 (from 2) as a brown oil; yield: 1.08 g (84%). The oil solidified upon standing in a refrigerator.

Compounds 6 (from 5) was obtained as a yellow oil; yield: 1.15 g (65%); Rf = 0.56 (hexane–EtOAc 2:1).

Both crude diketo compounds 3 and 6 were used immediately in the next step. Purification of the crude products were attempted by flash chromatography (hexane–EtOAc 2:1) for analysis only, however, compound 6 proved to be unstable.

1-Methoxy-2,2,5,5-tetramethylpyrrolidin-3,4-dione (3)
Yellow crystals; mp 41–42 °C; Rf = 0.51 (hexane–EtOAc 2:1); visualized by I2 vapor.

IR (neat): 1764, 1659 cm–1.
1H NMR (500 MHz, CDCl3): δ = 3.76 (s, 3 H, OCH3), 1.39 (s, 12 H, 4 × CH3).

13C NMR (125 MHz, CDCl3): δ = 120.2 (2 × C=O), 67.3 (2 C), 65.7 (OCH3), 25.3 (2 × CH2), 197.2 (2 × CH3).

MS (EI): m/z (%) = 186 (33, [M]+), 185 (7), 144 (23), 98 (100), 88 (60), 43 (27).

Anal. Calcd for C6H11NO: C, 58.36; H, 8.16; N, 7.56. Found: C, 58.48; H, 8.11; N, 7.36.

Preparation of Compounds 7b, 8, 10b, and 11b; General Procedure
To a solution of compound 3 or 6 (5.0 mmol) in anhyd EtOH (20 mL) was added compound 7a, or 10a, or 11a (the latter was previously released from its 2 HCl salt with 2.0 equiv of NaO Et) (5.0 mmol) and the mixture was refluxed for 3 h and allowed to stay in air overnight. The solvent was evaporated and the residue was purified by flash column chromatography (hexane–EtOAc 2:1) or hexane–EtOAc 2:1, or CHCl3–EtO) to give compounds 7b or 8 or 10b or 11b.
To a solution of compound 3 (555 mg, 3.0 mmol) in glacial AcOH (10 mL) was added compound 12a (330 mg, 3.0 mmol) and the mixture was refluxed for 3 h. After cooling, the solid was filtered and evaporated, and the residue was treated with distilled H₂O (20 mL) and sat. aq K₂CO₃ (20 mL). The mixture was extracted with CHCℓ₃ (3 × 30 mL), the combined organic phases were dried (MgSO₄), filtered, and evaporated. The residue was purified by flash column chromatography (hexane–EtOAc, 1:1) to give compound 12b as a beige powder; yield: 385 mg (50%); mp 115–117 °C; Rf = 0.57 (CHCl₃–Et₂O 2:1).

IR (neat): 3321, 3066, 2973, 2926, 1573, 1503 cm⁻¹.

1H NMR (500 MHz, DMSO–d₆): δ = 15.62 (s, 3 H, OCH₃), 12.15 (s, 1 H, ArH), 7.66 (d, J = 8 Hz, 2 H, ArH), 7.50 (d, J = 8 Hz, 2 H, ArH), 6.60 (s, 2 H, ArH), 4.40 (q, J = 7 Hz, 2 H, ArH).

13C NMR (125 MHz, CDCl₃): δ = 150.8 (C), 150.5 (C), 126.2 (C), 125.2 (C), 66.8 (C), 66.7 (C), 64.6 (CH₂), 27.0 (2 × CH₃), 23.02 (2 × CH₃).

MS (EI): m/z (%) = 259 (14, [M]+), 244 (100), 213 (33), 198 (22), 42 (8).

Yield: 266 mg (55%); yellow solid; mp 169–171 °C; Rf = 0.41 (hexane–EtO₂ 2:1).

Spectroscopic data were the same as that of compound 9 (see above).

Analysis: Calcd for C₁₅H₁₄N₃O: C, 73.98; H, 7.54; N, 18.49. Found: C, 73.81; H, 7.66; N, 17.17.

Preparation of 7c, 10c, 11c, 12c, 13c, 17, 23, and 27 by Deprotection of Methoxyamines; General Procedure

Methoxyamine 7b or 10b or 11b or 12b or 22 or 26 (2.0 mmol) was stirred in DCM (20 mL) at r.t. Solid 3-chloroperbenzoic acid (~60%, 172 mg, 0.6 mmol) was added in two portions at 0 °C over 10 min. The solution turned yellow-orange, and the stirring was continued for an additional 30 min at r.t. Then, the solution was washed with 10% aq Na₂CO₃ (2 × 10 mL), the organic phase was separated, dried (MgSO₄), filtered, and evaporated. The residue was subjected to flash column chromatography (hexane–EtO₂ 2:1) to afford compound 7c as a yellow powder; yield: 58 mg (48%); mp 168–170 °C; Rf = 0.41 (hexane–EtO₂ 2:1).

IR (neat): 3064, 2976, 2930, 1639, 1619, 1519 cm⁻¹.

1H NMR [500 MHz, DMSO–d₆]: δ = 15.62 (s, 3 H, OCH₃), 12.15 (s, 1 H, ArH), 7.66 (d, J = 8 Hz, 2 H, ArH), 7.50 (d, J = 8 Hz, 2 H, ArH), 6.60 (s, 2 H, ArH), 4.40 (q, J = 7 Hz, 2 H, ArH).

13C NMR (125 MHz, CDCl₃): δ = 150.8 (C), 150.5 (C), 126.2 (C), 125.2 (C), 66.8 (C), 66.7 (C), 64.6 (CH₂), 27.0 (2 × CH₃), 23.02 (2 × CH₃).

MS (EI): m/z (%) = 242 (100, [M]+), 211 (32), 197 (71), 42 (47).

© 2019. Thieme. All rights reserved. — Synthesis 2019, 51, 4463–4472
Purified by flash column chromatography (hexane–EtOAc 2:1) to obtain an orange powder; yield: 348 mg (61%); mp 249–252 °C; Rf = 0.30 (CHCl₃–Et₂O 2:1).

IR (neat): 3375, 3180, 2984, 1672, 1575 cm⁻¹.

¹H NMR [500 MHz, CDCl₃ + (PhNH)₂]: δ = 9.42 (s, 1 H, NH₂), 8.56 (dd, J = 7.5 Hz, 1 H, ArH), 8.20 (dd, J = 8 Hz, 1 H, ArH), 8.01 (m, 2 H, ArH and NH₂), 1.48 (s, 12 H, 4 × CH₃).

¹³C NMR [125 MHz, CDCl₃–Et₂O]: δ = 166.4 (C=O), 161.0 (C), 160.3 (C), 142.7 (C), 139.3 (C), 133.0 (C), 132.3 (CH), 131.2 (CH), 129.3 (CH), 65.3 (2 C), 25.2 (2 × CH₃), 25.1 (2 × CH₃).

MS (EI): m/z (%) = 285 (100, [M⁺]), 255 (12), 238 (48), 42 (20).

Anal. Calcld for C₂₀H₁₇N₇O₃: C, 64.14; H, 4.97; N, 19.51. Found: C, 64.07; H, 4.98; N, 19.45.

Purified by flash column chromatography (hexane–EtOAc 2:1) to afford an orange powder; yield: 422 mg (52%); mp 235–238 °C; Rf = 0.44 (CHCl₃–Et₂O 2:1).

IR (neat): 3360, 2963, 1584 cm⁻¹.

¹H NMR and ¹³C NMR spectra cannot be recorded because of precipitation of compound 11c in DMSO-d₆ in the presence of 10.0 equiv of (PhNH)₂; For an EPR spectrum, see SI.

MS (EI): m/z (%) = 406 (100, [M⁺]), 391 (63), 361 (48), 346 (43), 331 (27), 158 (29).

Anal. Calcld for C₂₀H₁₇N₇O₃: C, 64.01; H, 6.45; N, 20.68. Found: C, 65.04; H, 6.35; N, 20.76.
Na₂CO₃ (2 × 20 mL) followed by H₂O (20 mL). The organic phase was washed with aq 10% NaCl (30 mL) was added and the organic layer was washed with aq 10% NaOH (2 mL) and the mixture was heated for 4 h under N₂. After cooling, the solvents were evaporated, and the residue was partitioned between sat. aq NH₄Cl (20 mL) and CHCl₃ (50 mL). The organic phase was separated, dried (MgSO₄), filtered, and evaporated. The residue was purified by flash column chromatography (hexane–EtOAc 2:1) to give compound 16 as a colorless oil; yield: 223 mg (54%); Rf = 0.56 (hexane–EtOAc 2:1).

IR (neat): 3086, 2979, 2968, 1691, 1588 cm⁻¹.

To a stirred solution of compound 15 (418 mg, 2.0 mmol) in anhyd MeOH (10 mL) was added a solution of NaOEt [freshly prepared from Na (92 mg, 4.0 mmol) and anhyd EtOH (20 mL)] and then, the resulting mixture was refluxed for 4 h under N₂. After cooling, the solvents were evaporated, and the residue was partitioned between sat. aq NH₄Cl (20 mL) and CHCl₃ (50 mL). The organic phase was separated, dried (MgSO₄), filtered, and evaporated. The residue was purified by flash column chromatography (hexane–EtOAc 2:1) to give compound 16 as a colorless oil; yield: 223 mg (54%); Rf = 0.56 (hexane–EtOAc 2:1).

IR (neat): 3049, 2980, 2934, 1545 cm⁻¹.

To a stirred solution of compound 20 (235 mg, 1.0 mmol) in anhyd THF (5 mL) was added CDI (22.9 mg, 0.14 mmol) and the mixture was refluxed for 4 h under N₂. After cooling, the solvents were evaporated, and the residue was partitioned between sat. aq NH₄Cl (20 mL) and CHCl₃ (50 mL). The organic phase was separated, dried (MgSO₄), filtered, and evaporated. The residue was purified by flash column chromatography (hexane–EtOAc 2:1) to give compound 21 as a yellow oil; yield: 502 mg (36%); Rf = 0.55 (hexane–EtOAc 2:1).

IR (neat): 2979, 2936, 1720, 1573, 1559 cm⁻¹.

To a stirred solution of compound 17 (768 mg, 4.0 mmol) in DCM (40 mL) was added solid 3-chloroperbenzoic acid (~60%, 5.73 g, 20.0 mmol) over a period of 1 h. The reaction was monitored by TLC, and after the consumption of the starting material (24 h), the precipitated 3-chlorobenzoic acid was filtered out on a sintered glass funnel. DCM (20 mL) was added and the mixture was heated for 1 h. After standing overnight at r.t. in air, solvents were evaporated, and the residue was purified by flash column chromatography (hexane–EtOAc 2:1) to give compound 19 as yellow crystals; yield: 108 mg (38%); mp 121–124 °C; Rf = 0.33 (hexane–EtOAc 2:1).

IR (neat): 3060, 2978, 2932, 1585 cm⁻¹.

6-Methoxy-5,5,7,7-tetramethyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine (16)

1H NMR [500 MHz, CDCl₃ + (PhNH)₂]; δ = 3.73 (s, 3 H, OCH₃), 3.54 (s, 4 H, 2 × CH₂), 1.34 (s, 12 H, 4 × CH₃).

13C NMR [125 MHz, CDCl₃ + (PhNH)₂]; δ = 166.1 (2 × C), 65.6 (OCH₃), 64.3 (2 C), 44.9 (2 × CH₂), 27.0 (2 × CH₃), 21.0 (2 × CH₂).

MS (EI): m/z (%) = 209 (31, [M⁺]), 194 (100), 162 (62), 42 (34).

Ethyl 6-Methoxy-5,5,7,7-tetramethyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2-carboxylate (21)

1H NMR [500 MHz, CDCl₃ + (PhNH)₂]; δ = 9.09 (s, 1 H, ArH), 4.52 (q, J = 7.5 Hz, 2 H, OCH₂CH₃), 3.81 (s, 3 H, OCH₃), 1.55 (s, 12 H, 4 × CH₃), 1.46 (t, J = 7.5 Hz, 3 H, OCH₂CH₃).

13C NMR [125 MHz, CDCl₃ + (PhNH)₂]; δ = 164.4 (C=O), 162.3 (C), 158.9 (C), 145.4 (CH), 143.0 (C), 66.0 (2 C), 65.7 (OCH₃), 62.0 (OCH₂), 28.0 (2 × CH₂), 22.9 (2 × CH₃), 14.3 (CH₃).

MS (EI): m/z (%) = 279 (12, [M⁺]), 264 (100), 218 (75), 77 (57), 42 (85).

Anal. Calcd for C₁₉H₂₆N₂O₂: C, 67.38; H, 6.43; N, 14.08.

6-Methoxy-5,5,7,7-tetramethyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2-carboxamide (22)

A degassed mixture of Pd(OAc)₂ (22.0 mg, 0.1 mmol), Ag₂CO₃ (605 mg, 2.2 mmol), and compound 18 (208 mg, 1.0 mmol) in benzene (5 mL) in a screw-capped vial was stirred at 130 °C for 16 h in an oil bath.
purified by flash column chromatography (hexane–EtOAc, 2:1) to give compound 22 as a beige solid; yield: 247 mg (66%); mp 158–160 °C; \(R_f = 0.36 \) (CHCl₃–Et₂O 2:1).

IR (neat): 3440, 3197, 2977, 2948, 1685, 1575 cm⁻¹.

1H NMR (500 MHz, CDCl₃): \(\delta = 7.95 \) (d, \(J = 7 \) Hz, 2 H, ArH), 7.35–7.29 (m, 3 H, ArH), 3.75 (s, 3 H, OCH₃), 1.39 (s, 12 H, 4 × CH₃).

13C NMR (125 MHz, CDCl₃): \(\delta = 148.7 \) (C), 140.0 (C), 134.6 (C), 130.2 (C), 128.8 (2 × CH), 126.8 (C), 125.3 (2 × CH), 65.6 (OCH₃), 64.2 (C), 30.92 (4 × CH₃).

MS (EI): \(m/z \) (%) = 271 (8, [M]+), 256 (42), 227 (43), 149 (100).

5-Methoxy-2-phenyl-1,4,5,6-tetrahydro-pyrrolo[3,4-d]imidazole (25)

To a stirred solution of compound 3 (740 mg, 4.0 mmol) in anhyd EtOH (20 mL) were added NH₄OAc (616 mg, 8.0 mmol), SnO₂ (s, 12 H, 4 × CH₃).

IR (neat): 3060, 2977, 2948, 1575 cm⁻¹.

1H NMR (500 MHz, DMSO-d₆): \(\delta = 9.03 \) (s, 1 H, NH), 8.18 (s, 1 H, NH₂), 7.84 (s, 1 H, ArH), 3.77 (s, 3 H, OCH₃), 1.45 (s, 12 H, 4 × CH₃).

13C NMR (125 MHz, DMSO-d₆): \(\delta = 145.3 \) (C), 143.4 (C), 66.1 (C), 65.8 (C), 65.7 (OCH₃), 27.7 (2 × CH₂), 23.3 (2 × CH₃).

Funding Information

Financial supports from Hungarian National, Research, Development and Innovation Office (OTKA 124331) and grant GINOP (GINOP-2.3.2-15-2016-00049) are greatly acknowledged.

Acknowledgment

M.I. thanks the Stipendium Hungaricum Scholarship.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690678.

References

