J. ZHANG, Z. LI, J. ZHUO, Y. CUI, T. HAN, C. LI* (NATIONAL INSTITUTE OF BIOLOGICAL SCIENCES, BEIJING, TSINGHUA UNIVERSITY, BEIJING, GRADUATE SCHOOL OF PEKING UNION MEDICAL COLLEGE AND CHINESE ACADEMY OF MEDICAL SCIENCES, BEIJING, P. R. OF CHINA)

Tandem Decarboxylative Cyclization/Alkenylation Strategy for Total Syntheses of (+)-Longirabdiol, (-)-Longirabdolactone, and (-)-Effusin
J. Am. Chem. Soc. 2019, 141, 8372-8380.

Synthesis of (+)-Longirabdiol, (-)-Longirabdolactone, and (-)-Effusin

$\mathrm{BF}_{3} \mathrm{OEt} 2$ ($5 \mathrm{~mol} \%$), PhH, Δ $-40^{\circ} \mathrm{C}$ then aq $\mathrm{HCl} 0^{\circ} \mathrm{C}$ to r. 3. $\mathrm{NaBH}_{4}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$ 4. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MsCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ $\xrightarrow{\text { 5. } \mathrm{KOH}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(8: 1), 60^{\circ} \mathrm{C}}$ 87\% ee

1. NHPI, DIC, THF, $0^{\circ} \mathrm{C}$ to r.t. 2. $\mathrm{Zn}, \mathrm{LiCl}, \mathrm{H}, \mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($20 \mathrm{~mol} \%$), MeCN, 0 to $35^{\circ} \mathrm{C}$

Giese reaction $25 \% \left\lvert\, \begin{aligned} & \text { I. allylmagnesium bromide } \\ & \text { CuBr-Me }{ }_{2} \mathrm{~S}, \mathrm{LiBr}, \mathrm{THF},-78 \text { to }-40^{\circ} \mathrm{C} \\ & \text { 2. allyl iodide, } \mathrm{LDA}, \mathrm{THF},-78{ }^{\circ} \mathrm{C} \text { to } \text { r.t. } \\ & \text { 3. } \mathrm{Hoveyda-Grubbs} \mathrm{II} \mathrm{(5} \mathrm{~mol} \mathrm{\%),} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & \text { 4. } \mathrm{LDA},-78 \text { to } 4^{\circ} \mathrm{C}, \mathrm{THF}, \text { then } \mathrm{DMPU} \\ & \text { then } 2,3 \text {-dibromopropene, }-78 \text { to } 0^{\circ} \mathrm{C}\end{aligned}\right.$

Category

Synthesis of Natural Products and
Potential Drugs

Key words

(+)-longirabdiol
(-)-longirabdolactone
(-)-effusin
radical cyclization
Giese reaction
Riley oxidation

Significance: Owing to their well-established biological effects and structural complexity, ent-kaurane diterpenoid natural products continue to attract interest from the synthetic community. Li and co-workers present enantioselective total syntheses of three spirolactone ent-kauranoids by relying on a sequence involving an elegant tandem decarboxylative cyclization alkenylation. Two additional free radical-based cyclization events allowed the team to access (+)-longirabdiol. Closely related natural products (-)-longirabdolactone and (-)-effusin were synthesized by implementation of few additional transformations.

Comment: The authors initiated their synthetic route by preparation of enantioenriched acid \mathbf{C} followed by its subsequent transformation into the re-dox-active ester \mathbf{D}. Tandem radical cyclization/alkenylation led to the formation of lactone \mathbf{F} with good diastereoselectivity. Following functional group interconversions, intermolecular decarboxylative Giese reaction and intramolecular lactonization gave rise to spiro-compound I. This intermediate was transformed into advanced intermediate J, thereby setting the stage for the last radical cyclization, allylic oxidation, and desilylation to afford (+)-longirabdiol.

[^0]
[^0]: synfacts Contributors: Erick M. Carreira, Niels Sievertsen Synfacts 2019, 15(08), 0833 Published online: 18.07.2019 DOI: 10.1055/s-0039-1690443; Reg-No.: C04119SF

