Synlett 2019; 30(18): 2051-2057
DOI: 10.1055/s-0039-1690154
account
© Georg Thieme Verlag Stuttgart · New York

Functional End Groups in Living Ring-Opening Metathesis Polymerization

The author thanks the Swiss National Science Foundation and the Fribourg Centre for Nanomaterials (Frimat) for financial support.
Further Information

Publication History

Received: 27 June 2019

Accepted after revision: 24 July 2019

Publication Date:
19 August 2019 (online)


Abstract

Over the last two decades many synthetic methods have been reported to selectively introduce a number of different functional groups at the chain end of a living ring-opening metathesis polymer. In this personal account, I would like to focus on a few such methods developed in my research group over the last several years and how these led to the discovery of catalytic living ring-opening metathesis polymerization, a ring-opening metathesis polymerization method controlled by the polymer end groups. This account consists of the following sections:

1 Introduction

2 Functionalization of the Propagating Chain End

3 Functionalization of the Initiating Chain End

4 Polymerization Control by Functional End Groups

5 Conclusions

 
  • References

  • 1 Uraneck CA, Hsieh HL, Buck OG. J. Polym. Sci. 1960; 46: 535
    • 2a Lo Verso F, Likos CN. Polymer 2008; 49: 1425
    • 2b Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ. Chem. Rev. 2009; 109: 5620
    • 4a Folmer BJ. B, Sijbesma RP, Versteegen RM, van der Rijt JA. J, Meijer EW. Adv. Mater. 2000; 12: 874
    • 4b Wei MH, Li BY, David RL. A, Jones SC, Sarohia V, Schmitigal JA, Kornfield JA. Science 2015; 350: 72
    • 4c de Espinosa LM, Fiore GL, Weder C, Foster EJ, Simon YC. Prog. Polym. Sci. 2015; 49–50: 60
    • 4d Brunsveld L, Folmer BJ. B, Meijer EW, Sijbesma RP. Chem. Rev. 2001; 101: 4071
  • 5 Grubbs RB, Grubbs RH. Macromolecules 2017; 50: 6979
    • 6a Jagur-Grodzinski J. J. Polym. Sci., Part A: Polym. Chem. 2002; 40: 2116
    • 6b Yu YG, Chae CG, Kim MJ, Seo HB, Grubbs RH, Lee JS. Macromolecules 2018; 51: 447
    • 6c Hirao A, Hayashi M. Acta Polym. 1999; 50: 219
    • 7a Feldthusen J, Ivan B, Muller AH. E, Kops J. J. Macromol. Sci., Pure Appl. Chem. 1995; A32: 639
    • 7b Sawamoto M, Enoki T, Higashimura T. Polym. Bull. (Berlin) 1987; 18: 117
    • 7c Aoshima S, Kanaoka S. Chem. Rev. 2009; 109: 5245
    • 8a Pan XC, Fantin M, Yuan F, Matyjaszewski K. Chem. Soc. Rev. 2018; 47: 5457
    • 8b Chmielarz P, Fantin M, Park S, Isse AA, Gennaro A, Magenau AJ. D, Sobkowiak A, Matyjaszewski K. Prog. Polym. Sci. 2017; 69: 47
    • 8c Pan XC, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Prog. Polym. Sci. 2016; 62: 73
    • 8d Tsarevsky NV, Matyjaszewski K. Chem. Rev. 2007; 107: 2270
    • 8e Pintauer T, Matyjaszewski K. Chem. Soc. Rev. 2008; 37: 1087
    • 8f Tasdelen MA, Kahveci MU, Yagci Y. Prog. Polym. Sci. 2011; 36: 455
    • 9a Anastasaki A, Willenbacher J, Fleischmann C, Gutekunst WR, Hawker CJ. Polym. Chem. 2017; 8: 689
    • 9b Siegwart DJ, Oh JK, Gao HF, Bencherif SA, Perineau F, Bohaty AK, Hollinger JO, Matyjaszewski K. Macromol. Chem. Phys. 2008; 209: 2180
    • 9c Gutekunst WR, Anastasaki A, Lunn DJ, Truong NP, Whitfield R, Jones GR, Treat NJ, Abdilla A, Barton BE, Clark PG, Haddleton DM, Davis TP, Hawker CJ. Macromol. Chem. Phys. 2017; 218: 1700107
  • 10 Junkers T. J. Polym. Sci., Part A: Polym. Chem. 2011; 49: 4154
    • 11a Willcock H, O’Reilly RK. Polym. Chem. 2010; 1: 149
    • 11b Moad G, Rizzardo E, Thang SH. Polym. Int. 2011; 60: 9
    • 11c Roth PJ, Haase M, Basche T, Theato P, Zentel R. Macromolecules 2010; 43: 895
    • 11d Moad G, Chong YK, Postma A, Rizzardo E, Thang SH. Polymer 2005; 46: 8458
    • 12a Bielawski CW, Grubbs RH. Angew. Chem. Int. Ed. 2000; 39: 2903
    • 12b Choi TL, Grubbs RH. Angew. Chem. Int. Ed. 2003; 42: 1743
    • 12c Dias EL, Nguyen ST, Grubbs RH. J. Am. Chem. Soc. 1997; 119: 3887
  • 13 Chen YJ, Abdellatif MM, Nomura K. Tetrahedron 2018; 74: 619
  • 14 Wu Z, Nguyen ST, Grubbs RH, Ziller JW. J. Am. Chem. Soc. 1995; 117: 5503
    • 15a Gordon EJ, Gestwicki JE, Strong LE, Kiessling LL. Chem. Biol. 2000; 7: 9
    • 15b Owen RM, Gestwicki JE, Young T, Kiessling LL. Org. Lett. 2002; 4: 2293
    • 15c Kolonko EM, Kiessling LL. J. Am. Chem. Soc. 2008; 130: 5626
    • 15d Matson JB, Grubbs RH. Macromolecules 2008; 41: 5626
  • 16 Hilf S, Berger-Nicoletti E, Grubbs RH, Kilbinger AF. M. Angew. Chem. Int. Ed. 2006; 45: 8045
  • 17 Hilf S, Grubbs RH, Kilbinger AF. M. Macromolecules 2008; 41: 6006
  • 18 Hilf S, Kilbinger AF. M. Macromolecules 2009; 42: 4127
  • 19 Nagarkar AA, Crochet A, Fromm KM, Kilbinger AF. M. Macromolecules 2012; 45: 4447
  • 20 Elling BR, Xia Y. ACS Macro Lett. 2018; 7: 656
  • 21 Hilf S, Grubbs RH, Kilbinger AF. M. J. Am. Chem. Soc. 2008; 130: 11040
  • 22 Liu P, Yasir M, Kurzen H, Hanik N, Schafer M, Kilbinger AF. M. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 2983
  • 23 Nagarkar AA, Kilbinger AF. M. Chem. Sci. 2014; 5: 4687
    • 24a Matson JB, Virgil SC, Grubbs RH. J. Am. Chem. Soc. 2009; 131: 3355
    • 24b Hanik N, Kilbinger AF. M. J. Polym. Sci., Part A: Polym. Chem. 2013; 51: 4183
  • 25 Liu P, Yasir M, Ruggi A, Kilbinger AF. M. Angew. Chem. Int. Ed. 2018; 57: 914
  • 26 Nagarkar AA, Yasir M, Crochet A, Fromm KM, Kilbinger AF. M. Angew. Chem. Int. Ed. 2016; 55: 12343
  • 27 Pal S, Lucarini F, Ruggi A, Kilbinger AF. M. J. Am. Chem. Soc. 2018; 140: 3181
  • 28 Zhang TQ, Fu LB, Gutekunst WR. Macromolecules 2018; 51: 6497
  • 29 Yasir M, Liu P, Tennie IK, Kilbinger AF. M. Nat. Chem. 2019; 11: 488