Deoxygenative Transformation of Carbonyl and Carboxyl Compounds Using gem-Diborylalkanes

Y. Hu
W. Sun
C. Liu*
Lanzhou Institute of Chemical Physics, P. R. of China

For aldehydes & ketones

For carboxylic acid derivatives

via B–O elimination

Thiadiazoloquinoxalines

B.-L. Hu
M. Baumgarten*
Max Planck Institute for Polymer Research, Germany

Thiadiazoloquinoxalines made soluble and core-extended
Controlled-Coupling of Quinone Monoacetals by New Activation Methods: Regioselective Synthesis of Phenol-Derived Compounds

T. Kamitanaka
K. Morimoto
T. Dohi
Y. Kita*
Ritsumeikan University, Japan

Various nucleophiles (Nu) react with quinone monoacetals (QMA) to afford ortho-substituted phenols, biaryls, dihydrobenzofurans, and \(\alpha \)-aryl carbonyls.

Cluster Cover Page

Cluster Preface: Electrochemical Synthesis and Catalysis
Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds

C. Song
K. Liu
X. Dong
C.-W. Chiang*
A. Lei*
Wuhan University, P. R. of China

Metallaelectro-Catalyzed C–H Activation by Weak Coordination

Y. Qiu
J. Struwe
L. Ackermann*
Georg-August-Universität Göttingen, Germany

Electrochemical Synthesis of 2-Hydroxy-para-terphenyls by Dehydrogenative Anodic C–C Cross-Coupling Reaction

S. Lips
R. Franke
S. R. Waldvogel*
Johannes Gutenberg University Mainz, Germany
Electrochemical C(sp³)–H Fluorination

Y. Takahira
M. Chen
Y. Kawamata
P. Mykhailiuk
H. Nakamura
B. K. Peters
S. H. Reisberg
C. Li
L. Chen
T. Hoshikawa
T. Shibuguchi
P. S. Baran

The Scripps Research Institute, United States

DOI: 10.1055/s-0037-1611737

* >20 examples
* unactivated 2° & 3° C(sp³)–H
* mild conditions
* scalable
* comparison with lit. methods

Electrochemical C(sp³)–H fluorination

Efficient Flow Electrochemical Alkoxylation of Pyrrolidine-1-carbaldehyde

N. Amri
R. A. Skilton
D. Guthrie
T. Wirth

Cardiff University, UK

DOI: 10.1055/s-0037-1611774

6 examples
≤ 94% conversion to monoalkoxy product
≤ 83% conversion to dialkoxy product

Phthalocyanines as a π–π Adsorption Strategy to Immobilize Catalyst on Carbon for Electrochemical Synthesis

K. J. Klunder
A. C. Cass
S. L. Anderson
S. D. Minteer

University of Utah, USA

DOI: 10.1055/s-0037-1611792

π–π Adsorption

Graphitic Carbon
A Flow Microreactor Approach to a Highly Efficient Diels–Alder Reaction with an Electrogenated o-Quinone

K. Tanaka
H. Yoshizawa
M. Atobe*
Yokohama National University, Japan

A microreactor setup is shown, with an anode and a cathode. The yield comparison is given:

- Batch type reactor: 13% yield
- Flow microreactor: up to 75% yield

Three-Component Chlorophosphinoylation of Alkenes via Anodically Coupled Electrolysis

L. Lu
N. Fu
S. Lin*
Cornell University, USA

The reaction scheme is shown with catalytic Mn electrolysis:

- 22 examples, 41–92% yield
- (R1 = aryl, alkyl; R2 = alkyl, H; R3 = alkyl, H; R4 = aryl, alkoxy; X = Cl, N₃)

Diastereodivergent Synthesis of Bromoiminolactones: Electrochemical and Chemical Bromoiminolactonization of α-Allylmalonamides

K. Yamamoto
K. Ishimaru
S. Mizuta
D. Minato
M. Kuriyama
O. Onomura*
Nagasaki University, Japan

The synthesis involves both electrochemical and chemical conditions:

- Up to >99:1 dr
- 14 examples
- Excellent yields and diastereoselectivity for both conditions
1,10-Phenanthroline- or Electron-Promoted Cyanation of Aryl Iodides

K. Mitsudo*
K. Yoshioka
T. Hirata
H. Mandal
K. Midorikawa
S. Suga*
Okayama University, Japan

1,10-phenanthroline or electroreduction

R_ArCN
1,10-phenanthroline
electroreduction

10 examples ≤ 78% yield

Cathodic Reduction of Caffeine: Synthesis of an Amino-Functionalized Imidazole from a Biobased Reagent

F. Pandolfi
I. Chiarotto
L. Mattiello
D. Rocco
M. Feroci*
Sapienza University, Italy

Electrochemical

Chemical
1) NaOH/water, reflux, 2 h
2) HCO2H/(CH3CO)2O, 55 °C, 2 h, rt, 12 h (literature)

51% (one step)

29% (two steps)

Electrochemical Deoxygenation of N-Heteroaromatic N-Oxides

P. Xu
H.-C. Xu*
Xiamen University, P. R. of China

Et4NPF6 (0.2 equiv)
MeCN/H2O (4:1), 80 °C
undivided cell

14 examples up to 80% yield
Oxidative Cyclization of Naphtholic Sulfonamides Mediated by a Chiral Hypervalent Iodine Reagent: Asymmetric Synthesis versus Resolution

N. Jain
J. E. Hein*
M. A. Ciufolini*
The University of British Columbia, Canada

Synlett 2019, 30, 1222–1227
DOI: 10.1055/s-0037-1611831

Oxidative Cyclization

Equation:

\[
\begin{align*}
\text{MCPBA, CH}_2\text{Cl}_2, -20 ^\circ\text{C} \\
\end{align*}
\]

- \(R\)-configuration
- Best results with \(R^1 = \text{Me}, R^2 = \text{Cl}\)
- \(11–87\%\) ee; \(\approx 20\%\) yield
- Crystallizes as a conglomerate
- Coupled Preferential Crystallization (CPC) enables the resolution of large amounts of racemate starting with 3–4 mg of \(>99\%\) ee material

Asymmetric Synthesis of cis-(S,R)-3-Amino-4-fluoro-1-methylpyrrolidine

Z. Fei
X. Xiong
C. Cheung
W. Liu
Q. Shen
J. Zhang
H. Gao
J. Bian*

Suzhou Novartis Pharma Technology Co., Ltd, P. R. of China

Synlett 2019, 30, 1228–1230
DOI: 10.1055/s-0037-1611553

Asymmetric Synthesis

Equation:

\[
\begin{align*}
\text{DAST, DCM} \\
-60 ^\circ\text{C} \text{ to rt, 16 h} \text{ 86\%}
\end{align*}
\]

- Complete retention
- Complete inversion

One-Pot Synthesis of Spiro-2H-pyrroles from \(N\)-Propargylic \(\beta\)-Enaminones

E. Karadeniz
M. Zora*
Middle East Technical University, Turkey

Synlett 2019, 30, 1231–1236
DOI: 10.1055/s-0037-1611816

One-Pot Synthesis

Equation:

\[
\begin{align*}
\text{Cs}_2\text{CO}_3, \text{DMSO, 80 } ^\circ\text{C} \\
8 \text{ examples} \text{ up to 75\% yield}
\end{align*}
\]
Intramolecular Aldol Ring Closures of Cysteine Derivatives Leading to Densely Functionalised Pyroglutamates

H. Almahli
N. C. Jimenez
M. G. Moloney*
The University of Oxford, UK

Intramolecular Aldol Ring Closure of Cysteine Derivatives Leading to Densely Functionalised Pyroglutamates

H. Almahli
N. C. Jimenez
M. G. Moloney*
The University of Oxford, UK

R1 = t-Bu, i-Pr, Ph, o-FC6H4, o-CF3C6H4; R2 = H, MeO, CH2=CHCH2-; p-BrC6H4; R3 = H, Me

Amino Acid Salt Catalyzed Asymmetric Addition Reaction of Acetylacetone to Maleimides and 2-(2-Oxindolin-3-ylidene)malononitriles

H. Wu
H. Liu
J. Li
X. Li*
H.-P. Xiao
J. Jiang*
Wenzhou University, P. R. of China

Amino Acid Salt Catalyzed Asymmetric Addition Reaction of Acetylacetone to Maleimides and 2-(2-Oxindolin-3-ylidene)malononitriles

H. Wu
H. Liu
J. Li
X. Li*
H.-P. Xiao
J. Jiang*
Wenzhou University, P. R. of China

n = 1, X = H, 24% yield, 0% ee
n = 2, X = Ba, up to 99% yield, 76% ee

Synthesis of 3-Halo-7-azaindoles through a 5-endo-dig Electrophilic Cyclization Reaction

A. Philips
C. Cunningham
K. Naran
T. Kesharwani*
University of West Florida, USA

Synthesis of 3-Halo-7-azaindoles through a 5-endo-dig Electrophilic Cyclization Reaction

A. Philips
C. Cunningham
K. Naran
T. Kesharwani*
University of West Florida, USA

(X = Cl, Br, I)
Yield 55–75%

R = alkyl, aryl, vinyl
Yield 45–97%