FR901483: Synthetic Efficiency Remains a Challenge

Z. Ruan
C. Li
D. Shen
S.-H. Huang*
R. Hong*
Shanghai Institute of Organic Chemistry (CAS), P. R of China
Shanghai Institute of Technology, P. R of China

The Chemical Syntheses of Nannocystins

Z. Wang*
State University of New York, USA
A New Wave of Amide Bond Formations for Peptide Synthesis

K. Hollanders
B. U. W. Maes*
S. Ballet*
Vrije Universiteit Brussel, Belgium
University of Antwerp, Belgium

Directed ortho-Metalation of Arenesulfonyl Fluorides and Aryl Fluorosulfates

A. Talko
D. Antoniak
M. Barbasiewicz*
University of Warsaw, Poland

A Graphene Oxide Nanosheet Supported NHC–Palladium Complex as a Highly Efficient and Recyclable Suzuki Coupling Catalyst

Y. Qian
J. So
S.-Y. Jung
S. Hwang
M.-J. Jin*
S. E. Shim*
Inha University, South Korea
Synthesis of 4-Organoselanyl-1H-pyrazoles: Oxone®-Mediated Electrophilic Cyclization of α,β-Alkynyl Hydrazones by Using Diorganyl Diselenides

G. Perin*
P. C. Nobre
D. H. Mailahn
M. S. Silva
T. Barcellos
R. G. Jacob
E. J. Lenardão
C. Santi
J. A. Roehrs
Universidade Federal de Pelotas (UFPel), Brazil

Bioinspired Synthesis of the Central Core of Halichonadin H: The Passerini Reaction in a Hypothetical Biosynthesis of Marine Natural Products

Y. Ichikawa*
T. Yamasaki
K. Nakanishi
Y. Udagawa
S. Hosokawa
T. Masuda
Kochi University, Japan

Regioselective Synthesis of 5-(Trifluoromethyl)[1,2,4]triazolo[1,5-a]pyrimidines from β-Enamino Diketones

V. P. Andrade
M. Mittersteiner
H. G. Bonacorso
C. P. Frizzo
M. A. P. Martins
N. Zanatta*
Universidade Federal de Santa Maria, Brazil
A New Method for the Preparation of Bis(alkylamino)maleonitriles from Aliphatic Isocyanides with TMSCN and Bi(OTf)₃

S. Tafuku
T. Fukuda
K. Chiba
Y. Kitano*
Tokyo University of Agriculture and Technology, Japan

R = NC

TMSCN

CH₂Cl₂, rt

Bi(OTf)₃

R

13 examples

up to 43% yield

• In a single step

• Highly functional-group tolerant

• Simple and mild conditions

Copper-Catalyzed Three-Component Coupling Reaction of Aryl Iodides, a Disilathiane, and Alkyl Benzoates Leading to a One-Pot Synthesis of Alkyl Aryl Sulfides

N. Sakai*
H. Maeda
Y. Ogiwara
Tokyo University of Science (RIKADAI), Japan

FG Ar

Me₃Si

SiMe₃

+ R`O

cat. Cu base

alkyl aryl sulfide

three-component coupling reaction via a single step
utility of a disilathiane as a sulfur source
expansion of an alkyl source to an alkyl benzoate

23 examples

Trichloroisocyanuric Acid Induced Chlorine Radical Cascade

Chlorination/Carbocyclization of Acrylamides: Constructing Chlorinated Oxindoles by C–Cl and C–C Bond-Forming Reactions

Y. Su*
L. Cao
Y. Shi
Y. Feng
W. Xue
G. Cao
K.-H. Wang
D. Huang
C. Huo
Y. Hu
Northwest Normal University, P. R. of China

R¹ = Cl, Br, F, CF₃, Me, Et
R² = Me, Et, Ph, Bn, CH₂CO₂Me
R³ = Me, Ph, Bn, CH₂OH, OTBS, OAc
R⁴ = H, Ph

Chlorine-radical-induced cyclization
Without metal or additional oxidant
Efficient C–Cl and C–C bond formation

23 examples

30–80% yield
Highly Efficient, Catalyst-Free, Diastereoselective, Diversity-Oriented Synthesis of Dihydrocoumarin–Pyroridine–Spirooxindoles Bearing Three Contiguous Stereocenters

X. Zuo
S. Chen
S.-W. Xu
S.-Q. Chang
X.-L. Liu*
Y. Zhou
W.-C. Yuan
Guizhou University, P. R. of China

Synthesis of 2-Fluoroacetoacetic Acid and 4-Fluoro-3-hydroxybutyric Acid

S. J. Mattingly
F. Wuest*
R. Schirrmacher*
University of Alberta, Canada

Palladium-Catalyzed Decarboxylative [4+2] Cycloaddition of Vinyl Benzoxazinanones with Cyclic N-Sulfimines: Stereoselective Synthesis of Benzosulfamidate-Fused Tetrahydroquinazolines

D. Mun
E. Kim
S.-G. Kim*
Kyonggi University, Republic of Korea
Vinylation of Carbonyl Oxygen in 4-Hydroxycoumarin: Synthesis of Heteroarylated Vinyl Ethers

R. Chatterjee
S. Santra
G. V. Zyryanov
A. Majee*
Visva-Bharati (A Central University), India

Vinylation of 4-Hydroxycoumarin

O-Vinylation of 4-Hydroxycoumarin

Major

(E/Z = 3:1)

R = aryl, alkyl, heteroaryl

19 examples

73–86% yields

Conditions: BF₃·OEt₂ (20 mol%), neat, 80 °C, 10 min

Palladium-Catalyzed C–P Cross-Coupling between (Het)aryl Halides and Secondary Phosphine Oxides

G. G. Zakirova
D. Y. Mladentsev
N. E. Borisova*
Lomonosov Moscow State University, Russian Federation

Pd-catalyzed cross-coupling

12 examples

35–95%

7 examples

75–98%

9 examples

35–91%

8 examples

68–98%

R = alkyl, aryl; X = I, Br, Cl;
R’ = EWG, EDG

Activation of Primary Amines by Copper(I)-Based Lewis Acid Promoters in the Solventless Synthesis of Secondary Propargylamines

C. Cimarelli*
F. Navazio
F. V. Rossi
F. Del Bello
E. Marcantoni
University of Camerino, Italy

Method A: 9 examples up to 62% yield
i) CuSO₄ (30 mol%)/NaI (60 mol%), PhCOOH (5 mol%), solventless, N₂, 80 °C

Method B: 20 examples up to 85% yield
ii) MgSO₄, CoCl₂·6H₂O (30 mol%), solventless, N₂, r.t., 0.25 h

iii) CuI (30 mol%), solventless, N₂, 40 °C
Synthesis
Synthesis 2019, 51, 2397–2401
DOI: 10.1055/s-0037-1610862

Y. Zhu§
Q. Wang§
H. Luo
Z. Wang
G. Zhang*
Y. Yu*
Zhejiang University,
P. R. of China

A Facile and Efficient Approach for the Synthesis of 3-Aryl-4-hydroxy-1,3-thiazolidin-2-ones

[Chemical reaction image]

80 °C, 21 h
72–90%
10 examples

Synthesis
Synthesis 2019, 51, 2402–2408
DOI: 10.1055/s-0037-1612279

Z.-R. Guan
S. Liu
Z.-M. Liu
M.-W. Ding*
Central China Normal University,
P. R. of China

One-Pot Three-Component Synthesis of Pyrrolidin-2-ones via a Sequential Wittig/Nucleophilic Addition/Cyclization Reaction

[Chemical reaction image]

Synthesis
Synthesis 2019, 51, 2409–2429
DOI: 10.1055/s-0037-1611736

J. Baumgartner
R. G. Bergman*
B. Kayser
T. P. Klupinski
Y. K. Park
K. P. C. Vollhardt*
M. J. West
B. Zhu
University of California at Berkeley, USA

The Quest for Double Vicinal C–H Bond Activation on the \((\eta^5:\eta^5\text{-Fulvalene})\text{diiridium Platform: Syntheses and Structures of (}\eta^5:\eta^5\text{-Fulvalene})\text{Ir}_2(\text{ortho-}\mu\text{-C}_6\text{H}_4)(\text{CO})_2 (r–l)\text{ and Related Complexes}\

[Chemical reaction images]
Green Access to α-Haloalkyl and α-Halobenzyl Esters, Versatile Intermediates for the One-Pot Two-Step Synthesis of O,O′-Diacyl Acetals Using Zinc-Based Ionic Liquid Catalyst

F. Fache*
I. de Azpiazu
B. Pelotier
O. Piva
C. Gozzi
Université Claude Bernard Lyon 1, France

14 examples up to 92% yield

\[\text{BMIZnCl}_3 \]