O. G. KULINKOVICH, S. V. SVIRIDOV, D. A. VASILEVSKI (BELORUSSIAN STATE UNIVERSITY, MINSK, USSR)

Titanium(IV) Isopropoxide-Catalyzed Formation of 1-Substituted Cyclopropanols in the Reaction of Ethylmagnesium Bromide with Methyl Alkanecarboxylates

The Catalytic Kulinkovich Reaction

1. **EtMgBr (2 equiv)**

 2. **Ti(Oi-Pr)₄ (5–10 mol%)**

 Et₂O, 18–20 °C, 1 h

 6 examples up to 95% yield

Selected examples:

- **OH**
 - 76% yield

- **Et**
 - 79% yield

- **n-Pr**
 - 91% yield

- **n-Bu**
 - 90% yield

- **n-Pent**
 - 94% yield

- **n-C₉H₂₀**
 - 95% yield

Proposed mechanism:

- **2 EtMgBr**
- **2 J-PROMgBr**

Significance: The Kulinkovich reaction generates cyclopropanols from simple Grignard reagents and esters in the presence of a titanium(IV) alkoxide catalyst. This reaction has been subsequently expanded to a wide range of substrates (see Review below) and an asymmetric version was also demonstrated by the group of Corey (*J. Am. Chem. Soc.* **1994**, **116**, 9345).

Comment: Although the group of Kulinkovich previously reported the synthesis of cyclopropanols through a titanium(IV) alkoxide mediated reaction (*Zh. Org. Khim.* **1989**, **25**, 2244), the current report demonstrated a method that was catalytic in titanium.

SYNFACTS Contributors: Mark Lautens, Egor M. Larin

Synfacts 2019, 15(08), 0890 | Published online: 18.07.2019

DOI: 10.1055/s-0039-1689804 | **Reg-No.:** L08519SF

© 2019, Thieme. All rights reserved. Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany