Semin Thromb Hemost 2019; 45(04): 413-422
DOI: 10.1055/s-0039-1688495
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Fibrin and Fibrinolysis in Cancer

Hau C. Kwaan
1   Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Paul F. Lindholm
2   Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
30 April 2019 (online)

Abstract

In 1878, Billroth discovered that tumor cells invest themselves in a fibrin thrombus, and he hypothesized that fibrin promotes tumor growth and invasion. Since then, many observations have supported this concept, showing that many hemostatic factors including fibrinogen, fibrin, and components of the fibrinolytic system have indeed a complex interaction with cancer growth and metastasis. Fibrin promotes cell migration by providing a matrix for tumor cell migration and by interactions with adhesive molecules and integrins. Fibrin-containing vascular endothelial growth factor promotes angiogenesis. Fibrin interacts with platelets and leukocytes, and promotes their respective carcinogenic properties. Fibrinolytic components exert different effects on tumors. Plasmin activates latent growth factors, and breaks down extracellular matrix (ECM), while urokinase plasminogen activator (uPA) and the uPA receptor (uPAR) form complexes with vitronectin and integrins to promote tumor cells to adhere to the ECM. This complex also binds the epidermal growth factor receptor on the tumor cell membrane, and signals the RAF-MEK-ERK pathway. The complex also binds to the G protein-coupled receptors leading to cell proliferation. Plasminogen activator inhibitor 1 (PAI-1) inhibits apoptosis, and increases tumor cell survival. PAI-1 also enhances cell senescence, leading to production of tumorigenic cytokines by the senescence secretome. The presence of uPA/uPAR and PAI-1 represents a strong biomarker for tumor aggressiveness and poor prognosis. Multiple attempts by blocking various carcinogenic steps have shown tumor-suppressing effects in experimental animals, but human responses are uncertain without clinical trials.

 
  • References

  • 1 Billroth T. Lectures on Surgical Pathology and Therapeutics. London, United Kingdom: The New Sydenham Society; 1878
  • 2 Iwasaki T. Histological and experimental observations on the destruction of tumour cells in the blood vessels. J Pathol Bacteriol 1915; 20: 85-105
  • 3 O'Meara RA, Jackson RD. Cytological observations on carcinoma. Ir J Med Sci 1958; (391) 327-328
  • 4 Danø K, Andreasen PA, Grøndahl-Hansen J, Kristensen P, Nielsen LS, Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 1985; 44: 139-266
  • 5 Kwaan HC. The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev 1992; 11 (3–4): 291-311
  • 6 Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 2000; 57 (01) 25-40
  • 7 DeWys WD, Kwaan HC, Bathina S. Effect of defibrination on tumor growth and response to chemotherapy. Cancer Res 1976; 36 (10) 3584-3587
  • 8 Agostino D, Agostino N. Trauma, fibrinogen levels and metastasis formation in experimental oncology [in Spanish]. Sangre (Barc) 1982; 27 (03) 301-307
  • 9 Klepfish A, Greco MA, Karpatkin S. Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix. Int J Cancer 1993; 53 (06) 978-982
  • 10 Carney DH, Stiernberg J, Fenton II JW. Initiation of proliferative events by human alpha-thrombin requires both receptor binding and enzymic activity. J Cell Biochem 1984; 26 (03) 181-195
  • 11 Chen LB, Buchanan JM. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc Natl Acad Sci U S A 1975; 72 (01) 131-135
  • 12 Gasic GJ, Gasic TB, Galanti N, Johnson T, Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer 1973; 11 (03) 704-718
  • 13 Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 1968; 61 (01) 46-52
  • 14 Zacharski LR, Henderson WG, Rickles FR. , et al. Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate. Final report of VA Cooperative Study #75. Cancer 1984; 53 (10) 2046-2052
  • 15 Meehan KR, Zacharski LR, Maurer LH. , et al. Studies of possible mechanisms for the effect of urokinase therapy in small cell carcinoma of the lung. Blood Coagul Fibrinolysis 1995; 6 (02) 105-112
  • 16 Trousseau A. Phlegmasia alba dolens. In: Clinique Medicale de l'Hotel-Dieu de Paris. Vol. 3. Paris, France: JB Balliere et Fils; 1865: 654-712
  • 17 Weisel JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 1992; 63 (01) 111-128
  • 18 Henschen-Edman AH. On the identification of beneficial and detrimental molecular forms of fibrinogen. Haemostasis 1999; 29 (2–3): 179-186
  • 19 Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood 2013; 121 (10) 1712-1719
  • 20 Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 2001; 936: 11-30
  • 21 Weisel JW. Fibrinogen and fibrin. Adv Protein Chem 2005; 70: 247-299
  • 22 Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci U S A 2000; 97 (26) 14156-14161
  • 23 Bunce LA, Sporn LA, Francis CW. Endothelial cell spreading on fibrin requires fibrinopeptide B cleavage and amino acid residues 15-42 of the beta chain. J Clin Invest 1992; 89 (03) 842-850
  • 24 Odrljin TM, Shainoff JR, Lawrence SO, Simpson-Haidaris PJ. Thrombin cleavage enhances exposure of a heparin binding domain in the N-terminus of the fibrin beta chain. Blood 1996; 88 (06) 2050-2061
  • 25 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26) 1650-1659
  • 26 Clark RA, Folkvord JM, Wertz RL. Fibronectin, as well as other extracellular matrix proteins, mediate human keratinocyte adherence. J Invest Dermatol 1985; 84 (05) 378-383
  • 27 Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res 2015; 3 (01) 1-11
  • 28 Dvorak HF, Nagy JA, Berse B. , et al. Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation. Ann N Y Acad Sci 1992; 667: 101-111
  • 29 Senger DR, Van de Water L, Brown LF. , et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 1993; 12 (3–4): 303-324
  • 30 Dvorak HF. Vascular permeability to plasma, plasma proteins, and cells: an update. Curr Opin Hematol 2010; 17 (03) 225-229
  • 31 Costantini V, Zacharski LR, Memoli VA. , et al. Fibrinogen deposition and macrophage-associated fibrin formation in malignant and nonmalignant lymphoid tissue. J Lab Clin Med 1992; 119 (02) 124-131
  • 32 Costantini V, Zacharski LR. The role of fibrin in tumor metastasis. Cancer Metastasis Rev 1992; 11 (3–4): 283-290
  • 33 Zacharski LR. Small cell carcinoma of the lung: interaction with the blood coagulation mechanism and treatment with anticoagulants. Onkologie 1987; 10 (04) 264-270
  • 34 Wojtukiewicz MZ, Zacharski LR, Memoli VA. , et al. Abnormal regulation of coagulation/fibrinolysis in small cell carcinoma of the lung. Cancer 1990; 65 (03) 481-485
  • 35 Ornstein DL, Zacharski LR, Memoli VA. , et al. Coexisting macrophage-associated fibrin formation and tumor cell urokinase in squamous cell and adenocarcinoma of the lung tissues. Cancer 1991; 68 (05) 1061-1067
  • 36 Wojtukiewicz MZ, Zacharski LR, Memoli VA. , et al. Indirect activation of blood coagulation in colon cancer. Thromb Haemost 1989; 62 (04) 1062-1066
  • 37 Costantini V, Zacharski LR, Memoli VA, Kisiel W, Kudryk BJ, Rousseau SM. Fibrinogen deposition without thrombin generation in primary human breast cancer tissue. Cancer Res 1991; 51 (01) 349-353
  • 38 Costantini V, Zacharski LR, Memoli VA, Kudryk BJ, Rousseau SM, Stump DC. Occurrence of components of fibrinolysis pathways in situ in neoplastic and nonneoplastic human breast tissue. Cancer Res 1991; 51 (01) 354-358
  • 39 Henke CA, Roongta U, Mickelson DJ, Knutson JR, McCarthy JB. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J Clin Invest 1996; 97 (11) 2541-2552
  • 40 Ugarova TP, Yakubenko VP. Recognition of fibrinogen by leukocyte integrins. Ann N Y Acad Sci 2001; 936: 368-385
  • 41 Jennewein C, Tran N, Paulus P, Ellinghaus P, Eble JA, Zacharowski K. Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med 2011; 17 (5–6): 568-573
  • 42 Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin. J Biol Chem 1998; 273 (46) 30719-30728
  • 43 Petzelbauer P, Zacharowski PA, Miyazaki Y. , et al. The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury. Nat Med 2005; 11 (03) 298-304
  • 44 Skogen WF, Senior RM, Griffin GL, Wilner GD. Fibrinogen-derived peptide B beta 1-42 is a multidomained neutrophil chemoattractant. Blood 1988; 71 (05) 1475-1479
  • 45 Yakovlev S, Gao Y, Cao C. , et al. Interaction of fibrin with VE-cadherin and anti-inflammatory effect of fibrin-derived fragments. J Thromb Haemost 2011; 9 (09) 1847-1855
  • 46 Gröger M, Pasteiner W, Ignatyev G. , et al. Peptide Bbeta(15-42) preserves endothelial barrier function in shock. PLoS One 2009; 4 (04) e5391
  • 47 Dejana E, Languino LR, Polentarutti N. , et al. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding. J Clin Invest 1985; 75 (01) 11-18
  • 48 Richardson DL, Pepper DS, Kay AB. Chemotaxis for human monocytes by fibrinogen-derived peptides. Br J Haematol 1976; 32 (04) 507-513
  • 49 Senior RM, Skogen WF, Griffin GL, Wilner GD. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J Clin Invest 1986; 77 (03) 1014-1019
  • 50 Sahni A, Francis CW. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 2000; 96 (12) 3772-3778
  • 51 Sahni A, Baker CA, Sporn LA, Francis CW. Fibrinogen and fibrin protect fibroblast growth factor-2 from proteolytic degradation. Thromb Haemost 2000; 83 (05) 736-741
  • 52 Shireman PK, Xue L, Maddox E, Burgess WH, Greisler HP. The S130K fibroblast growth factor-1 mutant induces heparin-independent proliferation and is resistant to thrombin degradation in fibrin glue. J Vasc Surg 2000; 31 (02) 382-390
  • 53 Bootle-Wilbraham CA, Tazzyman S, Thompson WD, Stirk CM, Lewis CE. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro. Angiogenesis 2001; 4 (04) 269-275
  • 54 Kołodziejczyk J, Ponczek MB. The role of fibrinogen, fibrin and fibrin(ogen) degradation products (FDPs) in tumor progression. Contemp Oncol (Pozn) 2013; 17 (02) 113-119
  • 55 Dvorak HF, Harvey VS, Estrella P, Brown LF, McDonagh J, Dvorak AM. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 1987; 57 (06) 673-686
  • 56 Dvorak HF. Thrombosis and cancer. Hum Pathol 1987; 18 (03) 275-284
  • 57 Olander JV, Bremer ME, Marasa JC, Feder J. Fibrin-enhanced endothelial cell organization. J Cell Physiol 1985; 125 (01) 1-9
  • 58 Qi J, Goralnick S, Kreutzer DL. Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells. Blood 1997; 90 (09) 3595-3602
  • 59 Lanir N, Ciano PS, Van de Water L, McDonagh J, Dvorak AM, Dvorak HF. Macrophage migration in fibrin gel matrices. II. Effects of clotting factor XIII, fibronectin, and glycosaminoglycan content on cell migration. J Immunol 1988; 140 (07) 2340-2349
  • 60 Zacharski LR, Howell AL, Memoli VA. The coagulation biology of cancer. Fibrinolysis and Proteolysis 1992; 6: 39-42
  • 61 Tsopanoglou NE, Pipili-Synetos E, Maragoudakis ME. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am J Physiol 1993; 264 (5, Pt 1): C1302-C1307
  • 62 Tsopanoglou NE, Maragoudakis ME. Role of thrombin in angiogenesis and tumor progression. Semin Thromb Hemost 2004; 30 (01) 63-69
  • 63 Veklich Y, Francis CW, White J, Weisel JW. Structural studies of fibrinolysis by electron microscopy. Blood 1998; 92 (12) 4721-4729
  • 64 Mihalyi E, Weinberg RM, Towne DW, Friedman ME. Proteolytic fragmentation of fibrinogen. I. Comparison of the fragmentation of human and bovine fibrinogen by trypsin or plasmin. Biochemistry 1976; 15 (24) 5372-5381
  • 65 Marder VJ, Shulman NR, Carroll WR. The importance of intermediate degradation products of fibrinogen in fibrinolytic hemorrhage. Trans Assoc Am Physicians 1967; 80: 156-167
  • 66 Marder VJ, Shulman NR, Carroll WR. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. J Biol Chem 1969; 244 (08) 2111-2119
  • 67 Pizzo SV, Schwartz ML, Hill RL, McKee PA. The effect of plasmin on the subunit structure of human fibrin. J Biol Chem 1973; 248 (13) 4574-4583
  • 68 Francis CW, Marder VJ, Barlow GH. Plasmic degradation of crosslinked fibrin. Characterization of new macromolecular soluble complexes and a model of their structure. J Clin Invest 1980; 66 (05) 1033-1043
  • 69 Francis CW, Marder VJ, Martin SE. Plasmic degradation of crosslinked fibrin. I. Structural analysis of the particulate clot and identification of new macromolecular-soluble complexes. Blood 1980; 56 (03) 456-464
  • 70 Gaffney PJ, Brasher M. Subunit structure of the plasmin-induced degradation products of crosslinked fibrin. Biochim Biophys Acta 1973; 295 (01) 308-313
  • 71 Pizzo SV, Taylor Jr LM, Schwartz ML, Hill RL, McKee PA. Subunit structure of fragment D from fibrinogen and cross-linked fibrin. J Biol Chem 1973; 248 (13) 4584-4590
  • 72 Gaffney PJ, Lane DA, Kakkar VV, Brasher M. Characterisation of a soluble D dimer-E complex in crosslinked fibrin digests. Thromb Res 1975; 7 (01) 89-99
  • 73 Nussenzweig V, Seligmann M, Pelmont J, Grabar P. The products of degradation of human fibrinogen by plasmin. I. Separation and physicochemical properties [in French]. Ann Inst Pasteur (Paris) 1961; 100: 377-389
  • 74 Marder VJ, Budzynski AZ. The structure of the fibrinogen degradation products. Prog Hemost Thromb 1974; 2 (00) 141-174
  • 75 Rubio-Jurado B, Tello-González A, Bustamante-Chávez L, de la Peña A, Riebeling-Navarro C, Nava-Zavala AH. Circulating levels of urokinase-type plasminogen activator receptor and d-dimer in patients with hematological malignancies. Clin Lymphoma Myeloma Leuk 2015; 15 (10) 621-626
  • 76 Mego M, Karaba M, Minarik G. , et al. Relationship between circulating tumor cells, blood coagulation, and urokinase-plasminogen-activator system in early breast cancer patients. Breast J 2015; 21 (02) 155-160
  • 77 Madureira PA, O'Connell PA, Surette AP, Miller VA, Waisman DM. The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesis. J Biomed Biotechnol 2012; 2012: 353687
  • 78 Semov A, Moreno MJ, Onichtchenko A. , et al. Metastasis-associated protein S100A4 induces angiogenesis through interaction with annexin II and accelerated plasmin formation. J Biol Chem 2005; 280 (21) 20833-20841
  • 79 Yakovlev S, Medved L. Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: localization of the fibrin-binding site within the third extracellular VE-cadherin domain. Biochemistry 2009; 48 (23) 5171-5179
  • 80 Akakura N, Hoogland C, Takada YK. , et al. The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer Res 2006; 66 (19) 9691-9697
  • 81 Dirix LY, Salgado R, Weytjens R. , et al. Plasma fibrin D-dimer levels correlate with tumour volume, progression rate and survival in patients with metastatic breast cancer. Br J Cancer 2002; 86 (03) 389-395
  • 82 Diao D, Zhu K, Wang Z. , et al. Prognostic value of the D-dimer test in oesophageal cancer during the perioperative period. J Surg Oncol 2013; 108 (01) 34-41
  • 83 Diao D, Wang Z, Cheng Y. , et al. D-dimer: not just an indicator of venous thrombosis but a predictor of asymptomatic hematogenous metastasis in gastric cancer patients. PLoS One 2014; 9 (7, e101125): e101125
  • 84 Diao D, Cheng Y, Song Y, Zhang H, Zhou Z, Dang C. D-dimer is an essential accompaniment of circulating tumor cells in gastric cancer. BMC Cancer 2017; 17 (01) 56
  • 85 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (02) 123-134
  • 86 Palumbo JS, Talmage KE, Massari JV. , et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 2007; 110 (01) 133-141
  • 87 Felding-Habermann B, Habermann R, Saldívar E, Ruggeri ZM. Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem 1996; 271 (10) 5892-5900
  • 88 Cardinali M, Uchino R, Chung SI. Interaction of fibrinogen with murine melanoma cells: covalent association with cell membranes and protection against recognition by lymphokine-activated killer cells. Cancer Res 1990; 50 (24) 8010-8016
  • 89 Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 2002; 62 (23) 6966-6972
  • 90 Alves CS, Burdick MM, Thomas SN, Pawar P, Konstantopoulos K. The dual role of CD44 as a functional P-selectin ligand and fibrin receptor in colon carcinoma cell adhesion. Am J Physiol Cell Physiol 2008; 294 (04) C907-C916
  • 91 Biggerstaff JP, Seth N, Amirkhosravi A. , et al. Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clin Exp Metastasis 1999; 17 (08) 723-730
  • 92 Gunji Y, Gorelik E. Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Res 1988; 48 (18) 5216-5221
  • 93 Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 2004; 104 (02) 397-401
  • 94 Palumbo JS, Kombrinck KW, Drew AF. , et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000; 96 (10) 3302-3309
  • 95 Palumbo JS, Barney KA, Blevins EA. , et al. Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. J Thromb Haemost 2008; 6 (05) 812-819
  • 96 Schmaier AA, Ambesh P, Campia U. Venous thromboembolism and cancer. Curr Cardiol Rep 2018; 20 (10) 89
  • 97 Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017; 130 (13) 1499-1506
  • 98 Guglietta S, Rescigno M. Hypercoagulation and complement: connected players in tumor development and metastases. Semin Immunol 2016; 28 (06) 578-586
  • 99 Donskov F. Immunomonitoring and prognostic relevance of neutrophils in clinical trials. Semin Cancer Biol 2013; 23 (03) 200-207
  • 100 Paneesha S, McManus A, Arya R. , et al; VERITY Investigators. Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics. Thromb Haemost 2010; 103 (02) 338-343
  • 101 Kasper B, Brandt E, Bulfone-Paus S, Petersen F. Platelet factor 4 (PF-4)-induced neutrophil adhesion is controlled by src-kinases, whereas PF-4-mediated exocytosis requires the additional activation of p38 MAP kinase and phosphatidylinositol 3-kinase. Blood 2004; 103 (05) 1602-1610
  • 102 Demers M, Krause DS, Schatzberg D. , et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109 (32) 13076-13081
  • 103 Maugeri N, Rovere-Querini P, Baldini M. , et al. Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: a candidate for microvessel injury in sytemic sclerosis. Antioxid Redox Signal 2014; 20 (07) 1060-1074
  • 104 Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost 2014; 40 (03) 277-283
  • 105 Carestia A, Kaufman T, Schattner M. Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol 2016; 7: 271
  • 106 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 107 Swystun LL, Mukherjee S, Liaw PC. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost 2011; 9 (11) 2313-2321
  • 108 Mitrugno A, Tormoen GW, Kuhn P, McCarty OJT. The prothrombotic activity of cancer cells in the circulation. Blood Rev 2016; 30 (01) 11-19
  • 109 Mann KG, Butenas S, Brummel K. The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol 2003; 23 (01) 17-25
  • 110 Cedervall J, Hamidi A, Olsson A-K. Platelets, NETs and cancer. Thromb Res 2018; 164 (Suppl. 01) S148-S152
  • 111 Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988; 263 (34) 18205-18212
  • 112 Cools-Lartigue J, Spicer J, McDonald B. , et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 2013; 123 (08) 3446-3458
  • 113 Kwaan HC. The biologic role of components of the plasminogen-plasmin system. Prog Cardiovasc Dis 1992; 34 (05) 309-316
  • 114 Abbas Rizvi SM, Li Y, Song EY. , et al. Preclinical studies of bismuth-213 labeled plasminogen activator inhibitor type 2 (PAI2) in a prostate cancer nude mouse xenograft model. Cancer Biol Ther 2006; 5 (04) 386-393
  • 115 Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost 1999; 82 (02) 259-270
  • 116 Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 1995; 270 (24) 14477-14484
  • 117 Vercauteren E, Gils A, Declerck PJ. Thrombin activatable fibrinolysis inhibitor: a putative target to enhance fibrinolysis. Semin Thromb Hemost 2013; 39 (04) 365-372
  • 118 Kwaan HC. The role of fibrinolysis in disease processes. Semin Thromb Hemost 1984; 10 (01) 71-79
  • 119 Kwaan HC, Keer HN. Fibrinolysis and cancer. Semin Thromb Hemost 1990; 16 (03) 230-235
  • 120 Kwaan HC, Keer HN, Radosevich JA, Cajot JF, Ernst R. Components of the plasminogen-plasmin system in human tumor cell lines. Semin Thromb Hemost 1991; 17 (03) 175-182
  • 121 Tagnon HJ, Whitmore Jr WF, Shulman NR. Fibrinolysis in metastatic cancer of the prostate. Cancer 1952; 5 (01) 9-12
  • 122 Kwaan HC, McMahon B. The role of plasminogen-plasmin system in cancer. Cancer Treat Res 2009; 148: 43-66
  • 123 Wallén P, Pohl G, Bergsdorf N, Rånby M, Ny T, Jörnvall H. Purification and characterization of a melanoma cell plasminogen activator. Eur J Biochem 1983; 132 (03) 681-686
  • 124 Kwaan HC, Radosevich JA, Xu CG, Lastre C. Tissue plasminogen activator and inhibitors of fibrinolysis in malignant melanoma. Tumour Biol 1988; 9 (06) 301-306
  • 125 Daneri-Navarro A, Macias-Lopez G, Oceguera-Villanueva A. , et al. Urokinase-type plasminogen activator and plasminogen activator inhibitors (PAI-1 and PAI-2) in extracts of invasive cervical carcinoma and precursor lesions. Eur J Cancer 1998; 34 (04) 566-569
  • 126 Salden M, Splinter TA, Peters HA. , et al; Rotterdam Oncology Thoracic Study Group. The urokinase-type plasminogen activator system in resected non-small-cell lung cancer. Ann Oncol 2000; 11 (03) 327-332
  • 127 Halamkova J, Kiss I, Pavlovsky Z. , et al. Clinical relevance of uPA, uPAR, PAI 1 and PAI 2 tissue expression and plasma PAI 1 level in colorectal carcinoma patients. Hepatogastroenterology 2011; 58 (112) 1918-1925
  • 128 Harris NLE, Vennin C, Conway JRW. , et al; Australian Pancreatic Cancer Genome Initiative. SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene 2017; 36 (30) 4288-4298
  • 129 Span PN, Witjes JA, Grebenchtchikov N. , et al. Components of the plasminogen activator system and their complexes in renal cell and bladder cancer: comparison between normal and matched cancerous tissues. BJU Int 2008; 102 (02) 177-182
  • 130 Baker EA, Leaper DJ, Hayter JP, Dickenson AJ. Plasminogen activator system in oral squamous cell carcinoma. Br J Oral Maxillofac Surg 2007; 45 (08) 623-627
  • 131 Look MP, van Putten WL, Duffy MJ. , et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst 2002; 94 (02) 116-128
  • 132 Harbeck N, Kates RE, Look MP. , et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res 2002; 62 (16) 4617-4622
  • 133 Kantelhardt EJ, Vetter M, Schmidt M. , et al. Prospective evaluation of prognostic factors uPA/PAI-1 in node-negative breast cancer: phase III NNBC3-Europe trial (AGO, GBG, EORTC-PBG) comparing 6×FEC versus 3×FEC/3×Docetaxel. BMC Cancer 2011; 11: 140-150
  • 134 Harbeck N, Schmitt M, Meisner C. , et al; Chemo-N 0 Study Group. Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer 2013; 49 (08) 1825-1835
  • 135 Astrup T. The biological significance of fibrinolysis. Lancet 1956; 271 (6942): 565-568
  • 136 Kwaan HC, Mazar AP, McMahon BJ. The apparent uPA/PAI-1 paradox in cancer: more than meets the eye. Semin Thromb Hemost 2013; 39 (04) 382-391
  • 137 Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol 2018; 8: 24
  • 138 Durand MK, Bødker JS, Christensen A. , et al. Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost 2004; 91 (03) 438-449
  • 139 Blouse GE, Dupont DM, Schar CR. , et al. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements. Biochemistry 2009; 48 (08) 1723-1735
  • 140 Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 2002; 1 (05) 445-457
  • 141 Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 2003; 63 (07) 1684-1695
  • 142 Breuss JM, Uhrin P. VEGF-initiated angiogenesis and the uPA/uPAR system. Cell Adhes Migr 2012; 6 (06) 535-615
  • 143 Uhrin P, Breuss JM. uPAR: a modulator of VEGF-induced angiogenesis. Cell Adhes Migr 2013; 7 (01) 23-26
  • 144 Montuori N, Ragno P. Role of uPA/uPAR in the modulation of angiogenesis. Chem Immunol Allergy 2014; 99: 105-122
  • 145 Binder BR, Mihaly J. The plasminogen activator inhibitor “paradox” in cancer. Immunol Lett 2008; 118 (02) 116-124
  • 146 Soff GA, Sanderowitz J, Gately S. , et al. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 1995; 96 (06) 2593-2600
  • 147 Kwaan HC, Wang J, Svoboda K, Declerck PJ. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer 2000; 82 (10) 1702-1708
  • 148 Resnati M, Pallavicini I, Wang JM. , et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci U S A 2002; 99 (03) 1359-1364
  • 149 Okumura Y, Kamikubo Y, Curriden SA. , et al. Kinetic analysis of the interaction between vitronectin and the urokinase receptor. J Biol Chem 2002; 277 (11) 9395-9404
  • 150 Bajou K, Masson V, Gerard RD. , et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001; 152 (04) 777-784
  • 151 Ohtani N, Hara E. Roles and mechanisms of cellular senescence in regulation of tissue homeostasis. Cancer Sci 2013; 104 (05) 525-530
  • 152 Özcan S, Alessio N, Acar MB. , et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY) 2016; 8 (07) 1316-1329
  • 153 Kortlever RM, Higgins PJ, Bernards R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 2006; 8 (08) 877-884
  • 154 Kuilman T, Michaloglou C, Vredeveld LC. , et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133 (06) 1019-1031
  • 155 Coppé JP, Patil CK, Rodier F. , et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6 (12) 2853-2868
  • 156 Rabbani SA, Gladu J. Urokinase receptor antibody can reduce tumor volume and detect the presence of occult tumor metastases in vivo. Cancer Res 2002; 62 (08) 2390-2397
  • 157 Li D, Liu S, Shan H, Conti P, Li Z. Urokinase plasminogen activator receptor (uPAR) targeted nuclear imaging and radionuclide therapy. Theranostics 2013; 3 (07) 507-515
  • 158 Song MK, Yang DH, Lee GW. , et al. High total metabolic tumor volume in PET/CT predicts worse prognosis in diffuse large B cell lymphoma patients with bone marrow involvement in rituximab era. Leuk Res 2016; 42: 1-6
  • 159 Yang D, Severin GW, Dougherty CA. , et al. Antibody-based PET of uPA/uPAR signaling with broad applicability for cancer imaging. Oncotarget 2016; 7 (45) 73912-73924
  • 160 Rabbani SA, Harakidas P, Davidson DJ, Henkin J, Mazar AP. Prevention of prostate-cancer metastasis in vivo by a novel synthetic inhibitor of urokinase-type plasminogen activator (uPA). Int J Cancer 1995; 63 (06) 840-845
  • 161 Xing RH, Mazar A, Henkin J, Rabbani SA. Prevention of breast cancer growth, invasion, and metastasis by antiestrogen tamoxifen alone or in combination with urokinase inhibitor B-428. Cancer Res 1997; 57 (16) 3585-3593
  • 162 Meyer JE, Brocks C, Graefe H. , et al. The oral serine protease inhibitor WX-671 - first experience in patients with advanced head and neck carcinoma. Breast Care (Basel) 2008; 3 (Suppl. 02) 20-24
  • 163 Goldstein LJ. Experience in phase I trials and an upcoming phase II study with uPA inhibitors in metastatic breast cancer. Breast Care (Basel) 2008; 3 (Suppl. 02) 25-28
  • 164 Dupont DM, Madsen JB, Kristensen T. , et al. Biochemical properties of plasminogen activator inhibitor-1. Front Biosci 2009; 14: 1337-1361
  • 165 Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 2002; 94 (08) 597-606
  • 166 Adair JH, Parette MP, Altinoğlu EI, Kester M. Nanoparticulate alternatives for drug delivery. ACS Nano 2010; 4 (09) 4967-4970
  • 167 Zhang Y, Kenny HA, Swindell EP. , et al. Urokinase plasminogen activator system-targeted delivery of nanobins as a novel ovarian cancer therapy. Mol Cancer Ther 2013; 12 (12) 2628-2639