Semin Thromb Hemost 2019; 45(06): 576-592
DOI: 10.1055/s-0039-1687908
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Tumors: Wounds That Do Not Heal—A Historical Perspective with a Focus on the Fundamental Roles of Increased Vascular Permeability and Clotting

Harold F. Dvorak
1   Center for Vascular Biology Research and the Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Funding This work was supported by NIH grants P01 CA92644 and R01CA142262, by SDG, and by a contract from the National Foundation for Cancer Research.
Further Information

Publication History

Publication Date:
16 May 2019 (online)

Abstract

Similarities between solid tumor stroma generation, wound healing, chronic inflammation, and associated inflammatory diseases have prompted interest from the time of Virchow. However, it was not until the 1970s that these entities were shown to share important molecular mechanisms. Foundational to all of them is the initiating role of vascular endothelial growth factor (VEGF-A) in increasing vascular permeability to plasma and plasma proteins. Extravasated plasma activates the tissue factor clotting pathway, leading to extravascular deposition of a fibrin gel. Fibrin serves initially as a provisional stroma that provides a favorable substrate for the attachment and migration of tumor cells, as well as host fibroblasts, endothelial, and inflammatory cells. Fibrin and its degradation products have proangiogenic activity with important roles in the generation of new blood vessels and connective tissue stroma. Over time, fibrin is degraded and replaced by vascular and subsequently by dense, relatively avascular collagenous connective tissue, the end-product referred to as desmoplasia in tumors and scar in healed wounds. Fibrin and the mature stroma that replaces it provide a diffusion barrier to chemotherapy and a structural barrier that inflammatory cells must cross to reach tumor cells. Plasma solutes of varying size cross the endothelial cells lining capillaries and venules of normal tissues and “mother” vessels of tumors and wounds by different anatomical pathways. VEGF-A levels fall back to normal as wounds heal but remain perpetually elevated in solid tumors. Thus, tumors may heal centrally but continually initiate new healing activity as they grow and invade surrounding normal tissues.

 
  • References

  • 1 Holash J, Maisonpierre PC, Compton D. , et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284 (5422): 1994-1998
  • 2 Bridgeman VL, Vermeulen PB, Foo S. , et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 2017; 241 (03) 362-374
  • 3 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26) 1650-1659
  • 4 Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res 2015; 3 (01) 1-11
  • 5 Ariyan CE, Brady MS, Siegelbaum RH. , et al. Robust antitumor responses result from local chemotherapy and CTLA-4 blockade. Cancer Immunol Res 2018; 6 (02) 189-200
  • 6 Chen PL, Roh W, Reuben A. , et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 2016; 6 (08) 827-837
  • 7 Galdiero MR, Marone G, Mantovani A. Cancer inflammation and cytokines. Cold Spring Harb Perspect Biol 2018; 10 (08) a028662
  • 8 Mantovani A. The inflammation - cancer connection. FEBS J 2018; 285 (04) 638-640
  • 9 Haddow A. Addendum to “molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing”?. Adv Cancer Res 1974; 20: 343-366
  • 10 Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ. Wounding and its role in RSV-mediated tumor formation. Science 1985; 230 (4726): 676-678
  • 11 Abramovitch R, Marikovsky M, Meir G, Neeman M. Stimulation of tumour angiogenesis by proximal wounds: spatial and temporal analysis by MRI. Br J Cancer 1998; 77 (03) 440-447
  • 12 Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci U S A 2011; 108 (10) 4093-4098
  • 13 Riss J, Khanna C, Koo S. , et al. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res 2006; 66 (14) 7216-7224
  • 14 Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341 (10) 738-746
  • 15 Colvin RB, Dvorak HF. Role of the clotting system in cell-mediated hypersensitivity. II. Kinetics of fibrinogen/fibrin accumulation and vascular permeability changes in tuberculin and cutaneous basophil hypersensitivity reactions. J Immunol 1975; 114 (1 Pt 2): 377-387
  • 16 Colvin RB, Johnson RA, Mihm Jr MC, Dvorak HF. Role of the clotting system in cell-mediated hypersensitivity. I. Fibrin deposition in delayed skin reactions in man. J Exp Med 1973; 138 (03) 686-698
  • 17 Dvorak HF. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J 2015; 21 (04) 237-243
  • 18 Rajan TV. The Gell-Coombs classification of hypersensitivity reactions: a re-interpretation. Trends Immunol 2003; 24 (07) 376-379
  • 19 Dvorak AM, Dvorak HF. Structure of Freund's complete and incomplete adjuvants. Relation of adjuvanticity to structure. Immunology 1974; 27 (01) 99-114
  • 20 Astrom KE, Waksman BH. The passive transfer of experimental allergic encephalomyelitis and neuritis with living lymphoid cells. J Pathol Bacteriol 1962; 83: 89-106
  • 21 Brent L, Brown J, Medawar PB. Skin transplantation immunity in relation to hypersensitivity. Lancet 1958; 2 (7046): 561-564
  • 22 Dvorak HF, Mihm Jr MC, Dvorak AM. , et al. Morphology of delayed type hypersensitivity reactions in man. I. Quantitative description of the inflammatory response. Lab Invest 1974; 31 (02) 111-130
  • 23 Dvorak HF, Hirsch MS. Role of basophilic leukocytes in cellular immunity to vaccinia virus infection. J Immunol 1971; 107 (06) 1576-1582
  • 24 Dvorak HF, Mihm Jr MC, Dvorak AM, Barnes BA, Manseau EJ, Galli SJ. Rejection of first-set skin allografts in man. the microvasculature is the critical target of the immune response. J Exp Med 1979; 150 (02) 322-337
  • 25 Dvorak HF, Mihm Jr MC. Basophilic leukocytes in allergic contact dermatitis. J Exp Med 1972; 135 (02) 235-254
  • 26 McDonough KA, Kress Y, Bloom BR. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 1993; 61 (07) 2763-2773
  • 27 Detmar M, Brown LF, Claffey KP. , et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 1994; 180 (03) 1141-1146
  • 28 Fava RA, Olsen NJ, Spencer-Green G. , et al. Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 1994; 180 (01) 341-346
  • 29 Koch AE, Harlow LA, Haines GK. , et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 1994; 152 (08) 4149-4156
  • 30 Dvorak HF, Dvorak AM, Simpson BA, Richerson HB, Leskowitz S, Karnovsky MJ. Cutaneous basophil hypersensitivity. II. A light and electron microscopic description. J Exp Med 1970; 132 (03) 558-582
  • 31 Colvin RB, Dvorak HF. Fibrinogen/fibrin on the surface of macrophages: detection, distribution, binding requirements, and possible role in macrophage adherence phenomena. J Exp Med 1975; 142 (06) 1377-1390
  • 32 Colvin RB, Mosesson MW, Dvorak HF. Delayed-type hypersensitivity skin reactions in congenital afibrinogenemia lack fibrin deposition and induration. J Clin Invest 1979; 63 (06) 1302-1306
  • 33 Richerson HB, Dvorak HF, Leskowitz S. Cutaneous basophil hypersensitivity. I. A new look at the Jones-Mote reaction, general characteristics. J Exp Med 1970; 132 (03) 546-557
  • 34 Friedlaender MH, Dvorak HF. Morphology of delayed-type hypersensitivity reactions in the guinea pig cornea. J Immunol 1977; 118 (05) 1558-1563
  • 35 Dvorak HF, Senger DR, Dvorak AM, Harvey VS, McDonagh J. Regulation of extravascular coagulation by microvascular permeability. Science 1985; 227 (4690): 1059-1061
  • 36 Colvin RB, Mihm Jr MC, Dvorak HF. Letter: cause of induration in skin tests (cont.). N Engl J Med 1976; 295 (13) 734-735
  • 37 Bast Jr RC, Manseau EJ, Dvorak HF. Heterogeneity of the cellular immune response. I. Kinetics of lymphocyte stimulation during sensitization and recovery from tolerance. J Exp Med 1971; 133 (02) 187-201
  • 38 Dvorak AM. Piecemeal degranulation of basophils and mast cells is effected by vesicular transport of stored secretory granule contents. Chem Immunol Allergy 2005; 85: 135-184
  • 39 Dvorak HF, Dvorak AM, Manseau EJ, Wiberg L, Churchill WH. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J Natl Cancer Inst 1979; 62 (06) 1459-1472
  • 40 Dvorak HF, Dvorak AM, Churchill WH. Immunologic rejection of diethylnitrosamine-induced hepatomas in strain 2 guinea pigs: participation of basophilic leukocytes and macrophage aggregates. J Exp Med 1973; 137 (03) 751-775
  • 41 Brown LF, Chester JF, Malt RA, Dvorak HF. Fibrin deposition in autochthonous Syrian hamster pancreatic adenocarcinomas induced by the chemical carcinogen N-nitroso-bis(2-oxopropyl)amine. J Natl Cancer Inst 1987; 78 (05) 979-986
  • 42 Brown LF, Van de Water L, Harvey VS, Dvorak HF. Fibrinogen influx and accumulation of cross-linked fibrin in healing wounds and in tumor stroma. Am J Pathol 1988; 130 (03) 455-465
  • 43 Dvorak HF, Dickersin GR, Dvorak AM, Manseau EJ, Pyne K. Human breast carcinoma: fibrin deposits and desmoplasia. Inflammatory cell type and distribution. Microvasculature and infarction. J Natl Cancer Inst 1981; 67 (02) 335-345
  • 44 Fernandez PM, Patierno SR, Rickles FR. Tissue factor and fibrin in tumor angiogenesis. Semin Thromb Hemost 2004; 30 (01) 31-44
  • 45 Harris NL, Dvorak AM, Smith J, Dvorak HF. Fibrin deposits in Hodgkin's disease. Am J Pathol 1982; 108 (01) 119-129
  • 46 Hiramoto R, Bernecky J, Jurandowski J, Pressman D. Fibrin in human tumors. Cancer Res 1960; 20: 592-593
  • 47 Kodama Y, Tanaka K. Thromboplastic and fibrinolytic activities of V2 and V7 carcinomas of rabbit, with special reference to fibrin deposition and thrombus formation in the tumors. Acta Pathol Jpn 1978; 28 (02) 279-286
  • 48 Rickles R, Levine M, Dvorak H. Abnormalities of hemostasis in malignancy. In: Bast Jr. RC, Ganster T, Holland J, Frei E. , eds. Cancer Medicine. 6th ed. Hamilton: BC Decker; 2003: 1131-52
  • 49 Dvorak HF, Rickles FR. Hemostasis and thrombosis in cancer. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN. , eds. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006: 851-873
  • 50 Brown LF, Asch B, Harvey VS, Buchinski B, Dvorak HF. Fibrinogen influx and accumulation of cross-linked fibrin in mouse carcinomas. Cancer Res 1988; 48 (07) 1920-1925
  • 51 Carr JM, Dvorak AM, Dvorak HF. Circulating membrane vesicles in leukemic blood. Cancer Res 1985; 45 (11 Pt 2): 5944-5951
  • 52 Furie B, Furie BC. Cancer-associated thrombosis. Blood Cells Mol Dis 2006; 36 (02) 177-181
  • 53 Dvorak HF, Quay SC, Orenstein NS. , et al. Tumor shedding and coagulation. Science 1981; 212 (4497): 923-924
  • 54 Dvorak HF, Van DeWater L, Bitzer AM. , et al. Procoagulant activity associated with plasma membrane vesicles shed by cultured tumor cells. Cancer Res 1983; 43 (09) 4434-4442
  • 55 Dvorak HF, Harvey VS, McDonagh J. Quantitation of fibrinogen influx and fibrin deposition and turnover in line 1 and line 10 guinea pig carcinomas. Cancer Res 1984; 44 (08) 3348-3354
  • 56 Dvorak HF, Orenstein NS, Carvalho AC. , et al. Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol 1979; 122 (01) 166-174
  • 57 Senger DR, Connolly DT, Van de Water L, Feder J, Dvorak HF. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 1990; 50 (06) 1774-1778
  • 58 Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219 (4587): 983-985
  • 59 Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 1986; 46 (11) 5629-5632
  • 60 Yeo TK, Senger DR, Dvorak HF, Freter L, Yeo KT. Glycosylation is essential for efficient secretion but not for permeability-enhancing activity of vascular permeability factor (vascular endothelial growth factor). Biochem Biophys Res Commun 1991; 179 (03) 1568-1575
  • 61 Abu-Jawdeh GM, Faix JD, Niloff J. , et al. Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab Invest 1996; 74 (06) 1105-1115
  • 62 Brown LF, Berse B, Jackman RW. , et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995; 26 (01) 86-91
  • 63 Brown LF, Harrist TJ, Yeo KT. , et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) in bullous pemphigoid, dermatitis herpetiformis, and erythema multiforme. J Invest Dermatol 1995; 104 (05) 744-749
  • 64 Guidi AJ, Abu-Jawdeh G, Berse B. , et al. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 1995; 87 (16) 1237-1245
  • 65 Guidi AJ, Abu-Jawdeh G, Tognazzi K, Dvorak HF, Brown LF. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer 1996; 78 (03) 454-460
  • 66 Brown LF, Berse B, Jackman RW. , et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 1993; 53 (19) 4727-4735
  • 67 Brown LF, Berse B, Jackman RW. , et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 1993; 143 (05) 1255-1262
  • 68 Brown LF, Tognazzi K, Dvorak HF, Harrist TJ. Strong expression of kinase insert domain-containing receptor, a vascular permeability factor/vascular endothelial growth factor receptor in AIDS-associated Kaposi's sarcoma and cutaneous angiosarcoma. Am J Pathol 1996; 148 (04) 1065-1074
  • 69 Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20 (21) 4368-4380
  • 70 Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol 2003; 162 (06) 1747-1757
  • 71 Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 1996; 93 (25) 14765-14770
  • 72 Dvorak HF, Sioussat TM, Brown LF. , et al. Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Exp Med 1991; 174 (05) 1275-1278
  • 73 Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 1992; 3 (02) 211-220
  • 74 Brown LF, Olbricht SM, Berse B. , et al. Overexpression of vascular permeability factor (VPF/VEGF) and its endothelial cell receptors in delayed hypersensitivity skin reactions. J Immunol 1995; 154 (06) 2801-2807
  • 75 Brown LF, Yeo KT, Berse B. , et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 1992; 176 (05) 1375-1379
  • 76 Brown LF, Berse B, Tognazzi K. , et al. Vascular permeability factor mRNA and protein expression in human kidney. Kidney Int 1992; 42 (06) 1457-1461
  • 77 Connolly DT, Heuvelman DM, Nelson R. , et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989; 84 (05) 1470-1478
  • 78 Keck PJ, Hauser SD, Krivi G. , et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246 (4935): 1309-1312
  • 79 Ferrara N, Keyt B. Vascular endothelial growth factor: basic biology and clinical implications. EXS 1997; 79: 209-232
  • 80 Brown LF, Detmar M, Claffey K. , et al. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 1997; 79: 233-269
  • 81 Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246 (4935): 1306-1309
  • 82 Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 2009; 21 (02) 154-165
  • 83 Boesiger J, Tsai M, Maurer M. , et al. Mast cells can secrete vascular permeability factor/ vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. J Exp Med 1998; 188 (06) 1135-1145
  • 84 Dalton HJ, Armaiz-Pena GN, Gonzalez-Villasana V, Lopez-Berestein G, Bar-Eli M, Sood AK. Monocyte subpopulations in angiogenesis. Cancer Res 2014; 74 (05) 1287-1293
  • 85 Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 1996; 270 (5 Pt 2): H1803-H1811
  • 86 Kamat BR, Brown LF, Manseau EJ, Senger DR, Dvorak HF. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development. Am J Pathol 1995; 146 (01) 157-165
  • 87 Phillips HS, Hains J, Leung DW, Ferrara N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 1990; 127 (02) 965-967
  • 88 Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 2014; 9: 47-71
  • 89 Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999; 237: 97-132
  • 90 Zhu J, Clark RAF. Fibronectin at select sites binds multiple growth factors and enhances their activity: expansion of the collaborative ECM-GF paradigm. J Invest Dermatol 2014; 134 (04) 895-901
  • 91 Danø K, Behrendt N, Høyer-Hansen G. , et al. Plasminogen activation and cancer. Thromb Haemost 2005; 93 (04) 676-681
  • 92 Chang HY, Sneddon JB, Alizadeh AA. , et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2004; 2 (02) E7 Online First: Epub Date]|.
  • 93 Dvorak HF, Harvey VS, Estrella P, Brown LF, McDonagh J, Dvorak AM. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 1987; 57 (06) 673-686
  • 94 Nagy JA, Dvorak AM, Dvorak HF. Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med 2012; 2 (02) a006544
  • 95 Gullino P. Extracellular compartments of solid tumors. In: Becker F. , ed. Cancer: A Comprehensive Treatise. New York: Plenum Press; 1975: 327-54
  • 96 Nagy JA, Vasile E, Feng D. , et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002; 196 (11) 1497-1506
  • 97 Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 1982; 79 (05) 264-269
  • 98 Brown LF, Lanir N, McDonagh J, Tognazzi K, Dvorak AM, Dvorak HF. Fibroblast migration in fibrin gel matrices. Am J Pathol 1993; 142 (01) 273-283
  • 99 Ciano PS, Colvin RB, Dvorak AM, McDonagh J, Dvorak HF. Macrophage migration in fibrin gel matrices. Lab Invest 1986; 54 (01) 62-70
  • 100 Lanir N, Ciano PS, Van de Water L, McDonagh J, Dvorak AM, Dvorak HF. Macrophage migration in fibrin gel matrices. II. Effects of clotting factor XIII, fibronectin, and glycosaminoglycan content on cell migration. J Immunol 1988; 140 (07) 2340-2349
  • 101 Nakatsu MN, Sainson RC, Aoto JN. , et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res 2003; 66 (02) 102-112
  • 102 Dvorak HF, Form DM, Manseau EJ, Smith BD. Pathogenesis of desmoplasia. I. Immunofluorescence identification and localization of some structural proteins of line 1 and line 10 guinea pig tumors and of healing wounds. J Natl Cancer Inst 1984; 73 (05) 1195-1205
  • 103 Form DM, VanDeWater L, Dvorak HF, Smith BD. Pathogenesis of tumor desmoplasia. II. Collagens synthesized by line 1 and line 10 guinea pig carcinoma cells and by syngeneic fibroblasts in vitro. J Natl Cancer Inst 1984; 73 (05) 1207-1214
  • 104 Falanga V, Moosa HH, Nemeth AJ, Alstadt SP, Eaglstein WH. Dermal pericapillary fibrin in venous disease and venous ulceration. Arch Dermatol 1987; 123 (05) 620-623
  • 105 Warren B. The vascular morphology of tumors. In: Peterson H-I. , ed. Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. Boca Raton: CRC Press; 1979: 1-47
  • 106 Fu Y, Nagy J, Dvorak A, Dvorak HF. Tumor blood Vessels: Structure and Function. In: Teicher B, Ellis L. , eds. Cancer Drug Discovery and Function. Antiangiogenic Agents in Cancer Therapy. Totowa, NJ: Humana Press; 2007
  • 107 Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know?. Br J Cancer 2009; 100 (06) 865-869
  • 108 Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF. Heterogeneity of the tumor vasculature. Semin Thromb Hemost 2010; 36 (03) 321-331
  • 109 Pettersson A, Nagy JA, Brown LF. , et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 2000; 80 (01) 99-115
  • 110 Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89 (04) 1177-1215
  • 111 Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 2008; 11 (02) 109-119
  • 112 Nagy JA, Vasile E, Feng D. , et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 2002; 67: 227-237
  • 113 Uhlik MT, Liu J, Falcon BL. , et al. Stromal-based signatures for the classification of gastric cancer. Cancer Res 2016; 76 (09) 2573-2586
  • 114 Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest 1991; 65 (03) 334-346
  • 115 Nagy JA, Feng D, Vasile E. , et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest 2006; 86 (08) 767-780
  • 116 Swayne GT, Smaje LH, Bergel DH. Distensibility of single capillaries and venules in the rat and frog mesentery. Int J Microcirc Clin Exp 1989; 8 (01) 25-42
  • 117 Chang SH, Kanasaki K, Gocheva V. , et al. VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res 2009; 69 (10) 4537-4544
  • 118 Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 1996; 59 (01) 100-115
  • 119 Feng D, Nagy JA, Dvorak AM, Dvorak HF. Different pathways of macromolecule extravasation from hyperpermeable tumor vessels. Microvasc Res 2000; 59 (01) 24-37
  • 120 Sitohy B, Chang S, Sciuto TE. , et al. Early actions of anti-vascular endothelial growth factor/vascular endothelial growth factor receptor drugs on angiogenic blood vessels. Am J Pathol 2017; 187 (10) 2337-2347
  • 121 Sundberg C, Nagy JA, Brown LF. , et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol 2001; 158 (03) 1145-1160
  • 122 Goffin JR, Straume O, Chappuis PO. , et al. Glomeruloid microvascular proliferation is associated with p53 expression, germline BRCA1 mutations and an adverse outcome following breast cancer. Br J Cancer 2003; 89 (06) 1031-1034
  • 123 Straume O, Chappuis PO, Salvesen HB. , et al. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res 2002; 62 (23) 6808-6811
  • 124 Nagy JA, Morgan ES, Herzberg KT, Manseau EJ, Dvorak AM, Dvorak HF. Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res 1995; 55 (02) 376-385
  • 125 Wirzenius M, Tammela T, Uutela M. , et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 2007; 204 (06) 1431-1440
  • 126 Ren G, Michael LH, Entman ML, Frangogiannis NG. Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 2002; 50 (01) 71-79
  • 127 Saint-Geniez M, Ghelfi E, Liang X. , et al. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice. PLoS One 2014; 9 (05) e96253
  • 128 Palade G. The microvascular endothelium revisited. In: Simionescu N, Simionescu M. , eds. Endothelial Cell Biology in Health and Disease. New York: Plenum Press; 1988
  • 129 Chang SH, Feng D, Nagy JA, Sciuto TE, Dvorak AM, Dvorak HF. Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol 2009; 175 (04) 1768-1776
  • 130 Marichal T, Tsai M, Galli SJ. Mast cells: potential positive and negative roles in tumor biology. Cancer Immunol Res 2013; 1 (05) 269-279
  • 131 Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol 1961; 11: 607-626
  • 132 Majno G, Shea SM, Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol 1969; 42 (03) 647-672
  • 133 Baluk P, Hirata A, Thurston G. , et al. Endothelial gaps: time course of formation and closure in inflamed venules of rats. Am J Physiol 1997; 272 (1 Pt 1): L155-L170
  • 134 Feng D, Nagy JA, Hipp J, Dvorak HF, Dvorak AM. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J Exp Med 1996; 183 (05) 1981-1986
  • 135 Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol 1997; 504 (Pt 3): 747-761
  • 136 Kohn S, Nagy JA, Dvorak HF, Dvorak AM. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 1992; 67 (05) 596-607
  • 137 Qin L, Zhao D, Xu J. , et al. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood 2013; 121 (11) 2154-2164
  • 138 Feng D, Nagy JA, Pyne K, Hammel I, Dvorak HF, Dvorak AM. Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 1999; 6 (01) 23-44
  • 139 Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 1997; 57 (04) 765-772
  • 140 Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 1998; 187 (06) 903-915
  • 141 Carman CV. Mechanisms for transcellular diapedesis: probing and pathfinding by ‘invadosome-like protrusions’. J Cell Sci 2009; 122 (Pt 17): 3025-3035 Online First: Epub Date]|.
  • 142 Carman CV, Springer TA. Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 2008; 20 (05) 533-540 Online First: Epub Date]|.