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Pulmonary hypertension (PH) is a rare and fatal disease
characterized by elevation of the mean pulmonary artery
pressure � 25 mm Hg at rest or � 30 mm Hg with exercise
and is due to remodeling of the vasculature of the pulmonary
artery and increased vasoconstriction. This disease is char-
acterized by dyspnea initially while exercising, fatigue, diz-
ziness or fainting, chest pressure or pain, edema of ankles,
legs, ascites, cyanosis, and increased heart rate. If left
untreated, it results in right ventricular failure and ulti-
mately death.1 PH has been classified as pulmonary artery
hypertension (PAH), and PH due to left heart disease, lung
disease and/or hypoxia, unclear multifocal mechanisms, and

chronic thromboembolism.2 The incidence of portopulmon-
ary hypertension due to cirrhosis of the liver is high com-
pared to other types of hypertension.3 The annual incidence
of adult PH from the period of 2003 to 2012 increased from
24.1 to 28.7cases/100,000 population, and the annual pre-
valence from the period of 1993 to 2012 increased from 98.8
to 127.3 cases/100,000 population, respectively.4 Except for
PAH the epidemiology of PH is largely unknown.

Advanced glycation end products (AGE) and its receptor
RAGE (receptor for AGE) have been implicated in the patho-
physiology of numerous diseases including systemic hyper-
tension5and carotid artery stenosis.6Basedon the involvement
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Abstract Pulmonary hypertension (PH) is a rare and fatal disease characterized by elevation of
pulmonary artery pressure � 25 mm Hg. There are five groups of PH: (1) pulmonary
artery (PA) hypertension (PAH), (2) PH due to heart diseases, (3) PH associated with
lung diseases/hypoxia, (4) PH associated with chronic obstruction of PA, and (5) PH due
to unclear and/or multifactorial mechanisms. The pathophysiologic mechanisms of
group 1 have been studied in detail; however, those for groups 2 to 5 are not that well
known. PH pathology is characterized by smooth muscle cells (SMC) proliferation,
muscularization of peripheral PA, accumulation of extracellular matrix (ECM), plexiform
lesions, thromboembolism, and recanalization of thrombi. Advanced glycation end
products (AGE) and its receptor (RAGE) and soluble RAGE (sRAGE) appear to be
involved in the pathogenesis of PH. AGE and its interaction with RAGE induce vascular
hypertrophy through proliferation of vascular SMC, accumulation of ECM, and sup-
pression of apoptosis. Reactive oxygen species (ROS) generated by interaction of AGE
and RAGE modulates SMC proliferation, attenuate apoptosis, and constricts PA.
Increased stiffness in the artery due to vascular hypertrophy, and vasoconstriction
due to ROS resulted in PH. The data also suggest that reduction in consumption and
formation of AGE, suppression of RAGE expression, blockage of RAGE ligand binding,
elevation of sRAGE levels, and antioxidants may be novel therapeutic targets for
prevention, regression, and slowing of progression of PH. In conclusion, AGE–RAGE
stress may be involved in the pathogenesis of PH and the therapeutic targets should be
the AGE–RAGE axis.
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of the AGE–RAGE axis in various diseases, modulation of AGE
and RAGE has been proposed for the treatment of diseases
related to the AGE–RAGE axis.6,7 Epidemiology, classification,
hemodynamics, pathogenesis, the AGE–RAGE axis and treat-
ment modalities of PH have been addressed in this review.
Special attention has beengiven to the role ofAGE–RAGE stress
in the pathophysiology of PH and its treatment with reduction
in AGE–RAGE stress.

Epidemiology

The prevalence of PAH and idiopathic PAH is 15 cases and 5.9
cases/1 million adult population, respectively. The incidence
PAH is 2.4 cases/1 million adult population/year.8,9 The inci-
dence of PAH ranged from 1.1 to 7.6/1 million, and prevalence
ranged from 6.6 to 26.1/1 million for European countries, like
France, U.K., Ireland, and Spain.10 The prevalence of PH is up to
60% in patients with left ventricular systolic dysfunction, and
up to 70% in patients with isolated left ventricular diastolic
dysfunction.11 The incidence of PH is 20% in chronic obstruc-
tive pulmonary disease (COPD) patients with respiratory fail-
ure,12 but in advanced COPD the incidence is greater than
50%.13 The incidence of PH is 39% in patients with interstitial
lung disease.14 The incidence and prevalence of PH in chronic
pulmonary thromboembolism in theSpanishpopulation is 0.9
case/1million/year, and3.2 cases/1million, respectively.15The
incidence of PH after acute pulmonary embolism is 1.0 to
3.8%.16 The prevalence of PH in sarcoidosis is 1 to 28%.17

Classification of PH

The clinical classification of PH has been updated.1 PH has
been classified into five groups:

1. PAH that covers idiopathic, heritable, drug-and toxin-
induced, associated with connective tissue diseases, HIV
(human immunodeficiency virus) infection, portal hyper-
tension, congenital systemic to pulmonary shunts, schisto-
somiasis, PAH responders to calcium channel blockers,
persistent pulmonary hypertension of newborn syndrome,
and associated with venous/capillaries (pulmonary veno-
occlusive disease, pulmonary capillary hemangiomatosis).

2. PHdue to left heart diseases, such as heart failure, valvular
heart diseases, and congenital/acquired cardiovascular
conditions, leading to post capillary PH.

3. PH associated with lung diseases and/or hypoxia that
include COPD, interstitial lung diseases, and hypoxia
without lung diseases.

4. PH related to chronic obstruction of pulmonary artery,
such as chronic thromboembolism and other pulmonary
artery obstruction.

5. PH due to unclear and/or multifactorial mechanisms that
covers hematological disorders.

Hemodynamics of PH

Pulmonary hypertension is defined asmean pulmonary arter-
ial pressure (mPAP) � 25 mm Hg measured by right heart
catheterization, pulmonary capillary wedge pressure (PCWP)

� 15 mmHg and pulmonary vascular resistance (PVR) � 240
dynes/s/cm.5 Doppler’s echocardiography, although correlate
with right ventricular systolic pressure, they are not precise
and are not substitute for accurate PAP measured by cardiac
catheterization.18 The abnormal elevationofmPAP in isolation
is not adequate to define mPAP because it can be due to an
increase in cardiac output or pulmonary capillary wedge
pressure (PCWP). Hemodynamically PH is classified as pre-
capillary and postcapillary PH.19 In precapillary PH, mPAP
is � 25 mm Hg, PCWP is � 15 mm Hg, and PVR is � 240
dynes/s/cm,5 and cardiac output is normal or reduced. Clini-
cally PAH, and PH due to lung diseases, chronic thromboem-
bolism, andunclear and/ormultifactorial groups belong to this
class. Hemodynamically, PH due to left heart disease is classi-
fied as postcapillary PH where mPAP is � 25 mm Hg, PCWP
is � 15 mmHg, andPVR is < 240dynes/s/cm,5 cardiacoutput
is normal or reduced and passive transpulmonary pressure
gradient (TPG; mPAP–mPCWP) is � 12 mm Hg, and reactive
TPG is greater than 12 mm Hg.

Pathology of PH

Pulmonary hypertension is characterized by smooth muscle
cells proliferation, muscularization of peripheral pulmonary
arteries, and medial thickening of larger pulmonary arteries.
Muscularization is associated with fibroblastosis, reduced
responses to vasodilators, and formation of obliterative plexi-
form lesions. The pathophysiologic mechanisms of group 1
(PAH) have been studied in detail. However, the pathophysio-
logicmechanisms of groups 2 to 5 PHare not that well known.
The histopathological studies, such as vasculopathy, hypertro-
phy of media, intimal hyperplasia and fibrosis, plexiform
lesions, recanalization of thrombi, and thromboembolism,
are similar in all the five groups irrespective of the differences
in etiology. Increased vascular resistance in PAH is due to
vasoconstriction, vascular remodeling, and thrombosis.20

Since the etiologies are different for each group, the author
would like to describe the pathophysiology of each group in
short. Group 1 (PAH): in this group, distal pulmonary artery is
affected. The medial hypertrophy, intimal proliferation and
fibrosis, adventitial thickening, inflammatory infiltration, and
plexiform and thrombotic lesions characterize lesion. The
mechanisms of these pathological changes are multifactorial.
Hypoxia-induced pulmonary vasoconstriction leads to lumi-
nal narrowing. Hypoxia also inhibits voltage-gated potassium
channel in the smooth muscle cells of pulmonary artery
leading to the opening of the voltage-gated calcium channel.21

This would constrict the pulmonary artery causing dysfunc-
tion of pulmonary arterial endothelial cells resulting in
decreased production of vasodilators (prostacyclin, nitric
oxide [NO]), and increased production of vasoconstrictors
(endothelin-1, thromboxane A2).22 Pulmonary vascular remo-
deling is comprised ofmedial hypertrophydue to proliferation
of smoothmusclecellsof thepulmonaryarteryandneointimal
formation due to dysfunction and proliferation of endothelial
cells.23 Elevated production of the adventitial matrix and
reduction in proteolysis of the extracellular matrix (ECM)
would also contribute in remodeling of the pulmonary
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artery.22 Platelets are also involved in the pathogenesis of PAH
because they occlude the vessels through thrombosis and
generation of NO, a vasoconstrictor.24 Abnormal platelets
from patients with PAH have been shown to reduce the levels
ofendothelialNOsynthase.25Plasmaserotoninconcentrations
are higher in patients with PAH because of abnormal platelet
processing and storage. Serotonin is a vasoconstrictor and a
proliferator of smooth muscle cells. Group2: pathological
changes in this group include enlarged and thick pulmonary
veins, dilated pulmonary capillaries, interstitial edema, alveo-
lar hemorrhage and the enlargement of lymphatic vessels, and
lymph nodes.19 Theremay bemedial hypertrophy and intimal
fibrosis in the distal pulmonary artery. Group 3: pathological
changes in this group includemedial hypertrophy and intimal
proliferation of the distal pulmonary artery.19Group 4: patho-
logical lesions in this group are characterized by organized
thrombi attached to inner pulmonary arterial wall, plexiform
lesions, and collateral circulation from systemic arteries.19

Group5: pathological changes in thisgroupareheterogeneous
and variable.19

AGE–RAGE Stress in the Pathogenesis of
Pulmonary Hypertension

Recently, attention has been focused on the role of AGE and
RAGE and the circulating sRAGE in the pathophysiology of
pulmonary hypertension. The following sections describe
the AGE–RAGE axis, AGE–RAGE stress, serum/plasma levels
of AGE and sRAGE, and the levels of cell-bound RAGE in
patients with PH.

AGE–RAGE Axis

AGEs areheterogeneousgroups of irreversible adducts formed
by nonenzymatic glycation of proteins, lipids, and nucleic acid
with reducing sugars.26,27 AGE interacts with its cell-bound
receptor RAGE to generate reactive oxygen species (ROS)28

which in turn activates nuclear factor kappa B (NF-kB).29

Activated NF-kB activates numerous genes including proin-
flammatory cytokines,30 and adhesion molecules.31 RAGE is a
multiligand receptorwhich can bindwithmany ligands. There
are two isoforms of RAGE: cleaved RAGE (cRAGE), and endo-
genous secretory RAGE (esRAGE). cRAGE is proteolytically
cleaved from full length RAGE,32 while esRAGE is produced
from splicing of full length RAGE mRNA.33 Measurements of
sRAGE include both cRAGE and esRAGE. sRAGE acts as a decoy
for RAGE by binding with RAGE ligand.34 sRAGE binding with
ligands does not activate intracellular signaling. sRAGE is
cytoprotective because it protects from the adverse effects
of interaction of RAGE with ligands.

AGE–RAGE Stress

In the AGE–RAGE axis which is comprised of AGE, RAGE, and
sRAGE, AGE and RAGE are coined as stressors, while sRAGE,
enzymatic degraders of AGE (glyoxalase-1, glyoxalase-2),
receptor-mediated degraders of AGE (AGER-1, AGER-2),
and factors that lower the blood levels of AGE have been

coined as antistressors.35 The ratio of stressors/antistressors
has been termed as AGE–RAGE stress.35 The ratio of AGE/
sRAGEhas beenproposed as a simple and feasiblemeasure of
AGE–RAGE stress.35 A high index of AGE/sRAGEwould result
in tissue damage and the development of diseases.

Serum Levels of AGE in PH

Serum/plasma levels of AGE in patients with PH are not
available in literature. However, serum/plasma levels of AGE
indiseases associatedwithPHareknown. Plasma levels of AGE
(carboxymethyl lysine [CML]) are elevated in COPD patients
compared with non-COPD patients.36 AGE levels are elevated
in the lungs of patients with COPD.37 The AGE levels are
elevated in the skin of COPD patients.38 Serum levels of AGE
are significantly increased in patients with left ventricular
diastolic dysfunction in type 1 diabetes39,40 and heart
failure.41,42

Levels of RAGE in PH

The RAGE in endothelial cells of large and small pulmonary
arteries, neointimal proximal remodeled pulmonary
arteries, recanalized vessel-like structure of distal endarter-
ectomized chronic thromboembolism PH (CTEPH) and idio-
pathic PAH (iPAH) were differently expressed.43

There is an increased expression of RAGE in smooth
muscle cells of the pulmonary artery under hypoxic condi-
tions in both humans andmice.44 These authors also showed
that the expression of RAGE was upregulated in pulmonary
artery in hypoxia plus Sugen5416 (SU5416)-induced PAH
mice. They also demonstrated that RAGE deletion reduced
the PA pressure and restrained ECM accumulation in PA of
the mouse model. Blocking RAGE activity with neutralizing
antibody or genetic deletion of RAGE reduced ECM protein
accumulation.44 RAGE is one of the most upregulated pro-
teins in PAH lung tissue of PAH patients.45 There is an
increase in the RAGE mRNA levels in human pulmonary
hypertensive lung tissue compared with normotensive lung
tissue, and an increase in RAGE protein levels in pulmonary
artery in humanpulmonary hypertensive patients compared
with normotensive pulmonary artery (five-fold increase).46

They also showed that that there was no upregulation of
RAGE in other tissue (brain, kidney, and peripheral muscle).
Increased RAGE activation by its ligands including AGE
increases RAGE expression.28 It is possible that the increases
in AGE in PH could increase the expression of RAGE. The data
suggest that RAGE levels are elevated in patients with PH.

Serum/Plasma Levels of sRAGE in PH

Serum levels of sRAGE are variable in PH. Plasma levels of
sRAGE were significantly lower in patients with idiopathic
pulmonary fibrosis and interstitial lung disease.47 Serum
sRAGE levels are reduced in patients with emphysema.48

Serum levels of sRAGE were lower in patients with COPD
than the levels in control.38However, there are reports where
sRAGE levels have been higher in PH patients compared with
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controls. Plasma levels of sRAGE have been reported to be
higher in patientswith PHand CTEPH than those in controls.49

Serum levels of sRAGE and esRAGE were higher in patients
with iPAH and CTEPH compared with control subjects.43 The
discrepancy in the serum levels of sRAGE might be due to the
type of patients. High levels of sRAGE were in patients with
pulmonary hypertension, while the low levels of sRAGE were
in patients with lung diseases without hypertension.

Mechanism of AGE–RAGE-Induced
Pulmonary Hypertension

Remodeling of pulmonary artery in PAH is due to enhanced
proliferation and resistance to apoptosis of pulmonary artery
smoothmuscle cells. Since the histopathology of PH includes
intimal hyperplasia due to an increase in the proliferation of
smooth muscles and fibrosis, the focus will be on the role of
AGE, RAGE, and sRAGE on smooth muscle proliferation and
fibrosis. Attention will also be given to the vasoconstrictor
effect of the AGE–RAGE axis. Stiffness of the pulmonary
artery is due to the increased amounts of collagen, glycation
of collagen, and cross-linking of collagenwith AGEs. AGEs are
formed in the proteins of ECM. Accumulation of AGE on
protein of ECm leads to the formation of cross-link which
traps other localmacromolecules.50 Cross-linking of collagen
and elastin increases the ECM area which increases the
stiffness of the artery.51 Glycation also increases the synth-
esis of collagen.52 There is cross-linking of elastin with AGE
which reduces the elasticity of arteries. Matrix-bound AGE
inhibits antiproliferative activity of NO,53 reduce half-life of
NO synthase,54 impair NO production,55 inactivates NO,56

reduces the production of prostacycline,57 and increases the
expression of endothelin-1.58 AGE promotes proliferation
and suppresses autophagy via reduction in cathepsin D in
vascular smooth muscle cells.59 AGE promotes proliferation
and migration of primary rat vascular smooth muscle cells
via oxidative stress.60 The above data suggest that AGE can
increase thickness and resistance of the pulmonary artery
through increasing the matrix of blood vessels.

As described earlier, RAGE is a multiligand receptor and
combineswith ligands, such asAGE, highmobilitygroupbox-1
(HMGB-1), and calcium binding calgranulin-like protein
S100A4 (S100). S100 protein family consists of 24 members.
Extracellular S100A4 is one of the 24 members of S100. RAGE
has been implicated to play a role inmany signaling pathways,
such as inflammation, proliferation, and migration, all of
which are associated with pathology of PH.46 The AGE–RAGE
interaction leads to the generation of ROS, and the prolifera-
tion and autophagy in vascular smoothmuscle cells.61 In vitro,
S100A4 produces proliferation of human pulmonary arterial
smoothmuscle cells via anactionnon-RAGE.62RAGEmediates
deposition of ECMfibronectin and collagen through activation
of transforming growth factor–β1.44 Vascular remodeling of
the PA in PAH is characterized by deposition of ECM.63 Binding
of RAGE with HMGB-1 induces proliferation and migration of
fibroblasts which are prevented by RAGE antibody.64 RAGE
regulates the metabolic reprogramming-induced over-prolif-
eration in pulmonary hypertension.65 Recently, it has been

shown that RAGE plays a crucial role in inappropriate increase
in pulmonary arterial smooth muscle cells in PAH.66 These
above data suggest that AGE and its interaction with RAGE
would muscularize the pulmonary artery, induce medial
thickness andfibrosis, and increase stiffness in the pulmonary
artery.

AGE–RAGE interaction increases the generation of reactive
oxygen species including Superoxide anion, hydrogen perox-
ide, and hydroxyl radicals. Superoxide anion produces con-
traction of isolated rabbit aorta which is endothelium-
dependent and is partially mediated by arachidonic acid
metabolism.67H2O2 in lower concentration produces contrac-
tion, while in higher concentration, it produces transient
relaxation followed by contraction of isolated rabbit aorta.68

In vivo, ROS generated by polymorphonuclear leucocytes and
administration of oxygen radicals increase total peripheral
vascular resistance.69,70Oxidative stress plays a key role in the
pathogenesis of pulmonary components of COPD.71 COPD
patients have levels of ROS in plasma and endothelial cells
compared with control subjects. Emerging evidence demon-
strates the role of ROS in PH pathology. ROSmodulates cellular
proliferation and attenuates apoptosis.72 ROS plays a role in
mediating vasoconstrictor reactivity and pulmonary hyper-
tension in both chronic hypoxia and hypoxia/SU5416 rat
model.73 AGE–RAGE-induced generation of ROS increases
the pulmonary arterial pressure directly and through hyper-
trophy of pulmonary artery. The above data suggest that AGE
and its interaction with RAGE play a crucial role in pathogen-
esis of PH.

Therapeutic Approaches Targeting AGE–
RAGE Axis for Pulmonary Hypertension

Current treatment of pulmonary hypertension has pro-
gressed due to pulmonary hypertension-targeted drugs.
However, long-term survival of patients with PAH is still
suboptimal. A search for new treatment modalities that can
reverse pulmonary artery remodeling is on. Lately, attention
has been focused on the AGE–RAGE axis because it is
involved the pathogenesis of PH. AGE–RAGE axis (AGE,
RAGE, and sRAGE) is an important therapeutic target. Reduc-
tion in AGE and RAGE levels, elevation of sRAGE levels and
antioxidant are promising new therapeutic strategies in PH.

Reduction in the AGE levels
AGE levels in the body can be lowered by reducing dietary
consumption of AGE, preventing AGE formation and increas-
ing AGE degradation.

Reduction in Dietary Consumption of AGE
Glucose consumption should be reduced because glucose is
involved in the synthesis of AGE.27 Consumption of highAGE-
rich diets74 including, red meat, cheese, cream, butter, and
animal fat those have higher amounts of AGE than oil and
nuts should be reduced. Consumption of diets, such as butter,
cream, cheese, margarine, and mayonnaise, those have high-
est amount of AGE should also be reduced.75 These authors
also reported that beef has the highest amount of AGE,

International Journal of Angiology Vol. 28 No. 2/2019

AGE–RAGE Stress and Pulmonary Hypertension Prasad74

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



followed by poultry, pork, fish, and eggs. Diets with the
lowest amount of AGE,75 such as grains, legumes, vegetables,
fruits, and milk, should be consumed.75 Fat-free milk has
lower amounts of AGE than whole milk. Cooking at high
temperatures in dry heat should be avoided or markedly
reduced because it increases the formation of AGE. Frying,
broiling, grilling, and roasting generates more AGE than
poaching, stewing, steaming, and boiling.75 There is a reduc-
tion in AGE formation when cooking for short duration in
moist heat at low temperature.75 Short-term restriction of
dietary AGE has been reported to significantly reduce the
serum levels of AGE in healthy or diabetic individuals.76

Hence, foods should not be cooked at high temperature in
dry heat. Cigarette smoking should be stopped because it
increases serum levels of AGE.77

Prevention of AGE formation
There are numerous vitamins which inhibit the formation of
AGE. Benfotiamine (vitamin B1 derivative),78 pyridoxine,79

vitamins C,80 D,81 and E82 prevent the formation of AGE. Use
of these vitamins may help the patients with PH. Carnosine
inhibits the formation of AGE through acting as an antiox-
idant,83 a chelating agent for metal ions,84 and reacting with
the carbonyl group ofmethylglyoxal (MG)-modified proteins
resulting in protein-carbonyl-carnosine adducts. Carnosine
modified AGE becomes ineffective to interact with RAGE.85

Acidic ingredients, such as lemon juice or vinegar,86 and
pomegranate and its phenolic components87 inhibit the
formation of AGE. The patients with PH should be advised
to consume the above agents.

Degradation of AGE
AGE is degraded in the body in two ways: enzymatic degra-
dation and AGE-receptor-mediated degradation. Glyoxalase-
1 and glyoxalase-2 degrade AGE.88 Overexpression of glyox-
alase-1 in bovine endothelial cells completely prevented
hyperglycemia-induced AGE formation.89 AGE receptor
mediated degradation of AGE is accomplished by AGE recep-
tor-1 (AGER-1), AGER-2, and AGER-3.35,90 AGER-1 increases
the uptake and removal of AGE and blocks AGE–RAGE
mediated production of ROS and cytokines.90 Drugs should
be developed to overexpress the above enzymes and recep-
tors to reduce the levels of AGE.

Antagonist of RAGE
RAGE is antagonized by the suppression of its expression,
blockage of ligand binding, and inhibition of RAGE signal
transduction to antagonize RAGE receptor.

Downregulation of RAGE expression
Lipid lowering agents (simvastatin,91 and atorvastatin92),
angiotensin-II receptor blockers (telmisartan93 and cande-
sartan94), antidiabetic agent (thiazolidinediones95), calcium
channel blocker(nefedipine96), and curcumin97 downregu-
late the RAGE expression. Most of the above-mentioned
drugs except curcumin are being used for the treatment of
certain diseases and will have additional benefits. Meloche
et al46 has reported that RAGE inhibition by RAGE siRNA

selectively delivered to the lungs of monocrotaline and
Sugen-hypoxia-induced pulmonary hypertension in rats
reversed the pulmonary hypertension. This shows that sup-
pression of RAGE expression can indeed reverse the pulmon-
ary hypertension.

Blockers of RAGE Ligand Binding
Recently new drugs have been developed to block RAGE
ligand binding for the treatment of Alzheimer’s disease. The
drugs TTP488 or PF-04494700, also knownasAzeliragon, and
TTP4000 prevent RAGE ligand from interacting with RAGE.98

These new drugs has been shown to be of benefit in patients
with Alzheimer’s disease. These drugs have not been tried in
patients with PH. Inhibitors of RAGE have been discussed in
detail by Bongarzone et al.99

sRAGE
RAGE activationmay be prevented by sRAGEwhich competes
with RAGE for the same ligands and therefore fewer amounts
of ligands are spared to interact with RAGE to activate intra-
cellular signaling and produce harmful effects. sRAGE can
prevent RAGE signal transduction directly by preventing the
homodimerization of RAGE on cell surface binding with
ligands and does not activate intracellular signaling.100

Raising the Levels of sRAGE
Since sRAGE competes with RAGE for AGE ligand and since
interaction of sRAGEwith AGE does not activate intracellular
signaling, raising the levels of sRAGE would have beneficial
effects in patients with PH. Certain drugs commonly used in
patients for cardiovascular diseases and diabetes raise the
levels of sRAGE. Statins (pitavastatin and pravastatin101) in
humans; (atorvastatin, fluvastatin, and lovastatin102) in iso-
lated cell lines; angiotensin converting enzyme inhibitors
ramipril103 in serum of diabetic rats and perindopril104 in
serum of type-1 diabetics; and the antidiabetic drug, rosi-
glitazone, elevated the levels of sRAGE. Vitamin D elevates
the serum levels of sRAGE in women with POCS.105 Exogen-
ous administration of sRAGE has been demonstrated to
reduce/reverse RAGE-mediated pathology in the animal
model. sRAGE administration exogenously suppressed the
development of atherosclerosis and restenosis, prevented
destabilization of vulnerable plaques and reduced ischemia-
reperfusion-induced myocardial injury.26 Park et al106

reported that sRAGE totally prevented the development of
atherosclerosis in apolipoprotein-E (Apoe)-deficient mice
independent of glycemia and lipids. sRAGE markedly
reduced the carotid artery restenosis in mice,107 and AGE-
induced vasculopathy in diabetic rats.108 Administration of
sRAGE either peripherally or directly to organs has been
shown to reverse some of RAGE-mediated pathological
effects in vivo.109 sRAGE given intraperitoneally in the
dose of 20 microgram/day for 14 days in hypoxia-induced
PH in mice reduced hypoxia-induced PH, right ventricular
systolic pressure and peripheral vascular resistance but did
not affect distal pulmonary vascular remodeling.110 These
data suggest that sRAGE could prevent, regress, and slow the
progression of PH.
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Antioxidants

As mentioned earlier,72,73 ROS plays a major role in the
development of PH. Considering that antioxidants may be
an option for the treatment of PH. In experimental studies,
it has been shown that antioxidants attenuate the remodel-
ing of pulmonary vasculature.111,112 In a clinical trial,
melatonin administered in the dose of 3 mg/kg, orally for
3 months to patients with moderate to severe COPD,
reduced oxidative stress, and improved dyspnea.113 Mela-
tonin suppressed hypoxia-induced PH and reduced the
proliferation of smooth muscle cells of pulmonary artery
in rats.114 Melatonin (6 mg/kg) administered orally to
monocrotaline treated rats (model of pulmonary hyperten-
sion), improved lung edema, reduced right ventricular (RV)
hypertrophy and improved RV function and reduced inter-
stitial cardiac and lung fibrosis, and oxidative stress.115

Details of melatonin for possible treatment of PH are given
by Maarman.115 There are numerous enzymatic and other
nonenzymatic oxidants that can be of value in the adjunct
therapy of PH. Attention should be given to some of the
vitamins, such as vitamins E, C, and D, for use as an
antioxidants in PH patients. These vitamins have some
beneficial effects in patients with Alzheimer’s disease.

Discussion

Serum/plasma levels AGE have not been measured in
patients with PH. However the levels are elevated in the
diseaseswhere PH occurs.36–42 It would be useful if the levels
of AGE were measured because this would help in the
assessment of AGE–RAGE stress which is measured as
AGE/sRAGE.35 This ratio is a risk factor for disease and a
high ratio indicates the presence of disease and its complica-
tions.35 Levels of RAGE have been reported to be elevated in
patients with PH.44–46 Interaction of elevated levels of AGE
and RAGEwould increase the production of ROS, proinflam-
matory cytokines, and vascular remodeling. Serum levels of
sRAGE are variable in patients with PH and associated
diseases. Plasma levels of sRAGE have been reported to be
higher in patients with PH,43,49 while the levels are lower in
patients with lung disease without PH38,47,48 as compared
with controls. As stated earlier, sRAGE is cytoprotective and
hence, high levels of sRAGE would have protected the
development of PH but it did not do so. This is possible
becausebothAGE and sRAGE are elevated inpatientswith PH
but the elevation of AGEmay be greater than the elevation of
sRAGE. If this happens then more AGE is available to interact
with RAGE to induce PH and its complication. Recently
Prasad116,117 has reported that AGE/sRAGE, but not AGE or
sRAGE individually, is a risk factor/biomarker of diseases.
Why not use the levels of RAGE also in this equation? RAGE
levels can be measured in animal studies but in humans, it is
not possible to measure cell receptor RAGE. For measure-
ment of RAGE one has to get tissue samples. As stated earlier,
AGE–RAGE stress has been defined as a shift in the balance
between stressors (AGE, RAGE) and antistressors (AGEdegra-
ders, sRAGE) in favor of stressors. A simple and feasible

measure of AGE–RAGE stress (AGE/sRAGE) for clinical prac-
tice has been developed by Prasad and Mishra.35 A high ratio
of AGE/sRAGE indicates the presence of disease and its
complication.

From the available data, it appears that AGE–RAGE stress
is involved in the pathogenesis of PH. To date, the studies that
have been performed are mostly related to RAGE in the
pathogenesis of PH. The serum levels of AGE and sRAGE
should be measured in the same patient so that AGE-stress
can be assessed. Measurement of AGE or sRAGE individually
does not provide a complete picture in the pathogenesis of
PH. Plasma levels of AGE and sRAGE, and tissue levels of RAGE
should be measured in animal models of PH to provide a role
of AGE–RAGE stress in the pathogenesis of PH. A robust
clinical trial is needed for identifying the role of AGE–RAGE
stress in the pathogenesis of PH.

Considering the involvement of the AGE–RAGE axis in
the development of PH, the treatment should include
reduction in AGE and RAGE levels and elevation of sRAGE
levels in PH patients which have been discussed earlier in
detail by the author in this manuscript. Reduction of AGE
levels should be an adjunct therapy along with any other
treatments for PH. Consumption of acidic food, vitamins B1,
B6, C, D, and E should be encouraged because these agents
attenuate the synthesis of AGE. New drugs should be
developed to block RAGE ligand binding. Human recombi-
nant sRAGE should be developed for human use. Use of
antioxidant vitamins, especially vitamins C and E should not
be ignored. Combined use of drugs that reduce AGE levels
and expression of RAGE, blocker of RAGE ligand binding,
and elevation of sRAGE levels would block all pathways of
the AGE–RAGE axis and hence, would be more effective
than a single pathway blocker. While remembering that
AGE–RAGE stress may not be the only risk factor for PH, one
should not expect that.

Conclusions

The data, to date, suggest that AGE–RAGE stress may be
involved in the pathogenesis of PH. AGE and its interaction
with RAGE induce pulmonary vascular hypertrophy through
proliferation of smooth muscle cells, accumulation of ECM
and suppression of autophagy. AGE–RAGE-induced increase
in ROSmodulates cellular proliferation, attenuates apoptosis,
and constricts the blood vessels. Increased stiffness of the
artery due to vascular hypertrophy and vasoconstriction
results in pulmonary hypertension. The data also suggest
that the reduction in consumption and formation of AGE,
suppression of RAGE expression, blockage of RAGE ligand
binding, elevation of sRAGE, and antioxidant may be a novel
therapeutic target for prevention, regression, and slowing of
progression of PH.
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