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The acute respiratory distress syndrome (ARDS) phenotype was first described over
50 years ago and since that time significant progress has been made in understanding
the biologic processes underlying the syndrome. Despite this improved understanding,
no pharmacologic therapies aimed at the underlying biology have been proven
effective in ARDS. Increasingly, ARDS has been recognized as a heterogeneous
syndrome characterized by subphenotypes with distinct clinical, radiographic, and
biologic differences, distinct outcomes, and potentially distinct responses to therapy.
The Berlin Definition of ARDS specifies three severity classifications: mild, moderate,
and severe based on the PaO, to FiO, ratio. Two randomized controlled trials have
demonstrated a potential benefit to prone positioning and neuromuscular blockade in
moderate to severe phenotypes of ARDS only. Precipitating risk factor, direct versus
indirect lung injury, and timing of ARDS onset can determine other clinical phenotypes
of ARDS after admission. Radiographic phenotypes of ARDS have been described based
on a diffuse versus focal pattern of infiltrates on chest imaging. Finally and most
promisingly, biologic subphenotypes or endotypes have increasingly been identified
using plasma biomarkers, genetics, and unbiased approaches such as latent class
analysis. The potential of precision medicine lies in identifying novel therapeutics
aimed at ARDS biology and the subpopulation within ARDS most likely to respond. In
this review, we discuss the challenges and approaches to subphenotype ARDS into
clinical, radiologic, severity, and biologic phenotypes with an eye toward the future of
precision medicine in critical care.

Despite earlier descriptions of noncardiogenic pulmonary
edema, the phenotype we now refer to as the acute respira-
tory distress syndrome (ARDS) was first described in a case
series published in the Lancet just over 50 years ago.! In this
study, Ashbaugh and colleagues describe 12 adults with
acute onset hypoxic respiratory failure and poor lung com-
pliance. The patients demonstrated similar pathophysiology
despite distinct insults ranging from trauma to pneumonia to
pancreatitis. The authors also described improvements in
oxygenation with the application of positive end expiratory
pressure (PEEP), an observation that revolutionized early
ARDS care. Since this initial phenotypic description, multiple
clinical definitions have been proposed and evolved as our
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understanding of ARDS has improved.?~ Currently, the 2012
Berlin Definition of ARDS defines the syndrome as the acute
onset of hypoxia and bilateral pulmonary opacities not fully
explained by a cardiac cause.* Acute onset is specified to be
within 1 week of a precipitating illness and hypoxia is
determined by a PaO, to FiO, ratio less than or equal to
300 mm Hg while receiving a minimum of 5 cm H,0 of PEEP.

The development of broad consensus definitions of ARDS,
including the previous American-European Consensus Defi-
nition,3* has allowed for the completion of clinical trials
demonstrating a therapeutic benefit to several supportive
care interventions, including lung protective mechanical ven-
tilation and prone positioning.®’” Unfortunately, however, the
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large majority of ARDS clinical trials have failed, particularly
trials of pharmaceutical interventions targeting ARDS biol-
ogy.8 Thelargest challenge in phenotyping ARDS is the lack of a
simple diagnostic test, resulting in the reliance on a consensus
definition developed by experts.*® The current consensus
definition of ARDS remains challenging, as chest radiograph
interpretation has poor inter-rater reliability and clinicians
routinely fail to recognize ARDS when treating patients.'%14
Additionally, given the current intentionally broad definitions
of ARDS, the syndrome has marked clinical, radiologic, patho-
logic, and biologic heterogeneity. In an autopsy study of
patients who died with ARDS, only 45% demonstrated the
histopathologic correlate of ARDS, diffuse alveolar damage
(DAD), with the other 55% percent demonstrating a variety of
other pathologic findings."® It is this heterogeneity that is
hypothesized to underlie many failures in translation of pro-
mising preclinical therapeutics to patient populations. In this
review, we aim to outline the current approaches to under-
standing ARDS heterogeneity by identifying subphenotypes of
ARDS with distinct clinical, radiologic, or biologic character-
istics. We will discuss how unpacking heterogeneity has led to
some early successes, and the potential for future success with
this approach with an eye toward personalized medicine in
ARDS care.

Evolution of Phenotypes, Subphenotypes,
and Endotypes

A phenotype is defined as the set of observable characteristics
or traits of an organism resulting from the interaction of
genotype and the environment. The term has often been
used to describe syndromes and disorders in medicine
believed to develop from this interaction. Naturally, the iden-
tification of a phenotype in medicine begins with a description
of a group of individuals displaying similar characteristics, not
dissimilar to how Ashbaugh and colleagues initially described
12 cases of ARDS.! As a phenotype is investigated further, a
natural evolution occurs whereby the phenotype is better
characterized. By better characterizing a phenotype, misclas-
sification of similar phenotypes is reduced and subtypes are
discerned based on unique biology, clinical characteristics, or
response to treatment. In cardiology, the acute coronary
syndrome was initially described as sudden onset chest pain
that often resulted in death.'® This initial syndrome is now
commonly differentiated into unstable angina, non-ST eleva-
tion myocardial infarction, and ST elevation myocardial infarc-
tion based on electrocardiogram and troponin measurements.
These three subtypes of the acute coronary syndrome reflect
similar but distinct biology and call for distinct interventions.

Inherent in the process of syndrome evolution is the under-
standing of endotypes, or subtypes of a syndrome defined by
distinct biology.!” In pulmonary medicine, the understanding of
asthma has evolved from one disorder to multiple endotypes
with different clinical presentations, prognoses, and responses
to therapy. Initially described as a chronic disorder of the lung
characterized by variable airflow obstruction and an underlying
inflammatory process, asthma has long been recognized as
heterogeneous.'® Early descriptions of asthma divided patients
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into two subgroups, “extrinsic” or atopic asthma caused by
inhalation of allergens and “intrinsic” or nonatopic asthma.'® As
the biologic understanding of asthma improved, two distinct
inflammatory endotypes of asthma based on the presence or
absence of eosinophils were described.?’ More recently,
unbiased clustering algorithms incorporating clinical and bio-
logical variables have identified multiple clinical phenotypes of
asthma.?'-23 Additionally, therapies that target specific inflam-
matory mediators based on biomarker-defined endotypes are
now in use in asthma, including the anti-immunoglobulin E
therapeutic omalizumab.?* Similar phenotype evolutions can
be described for chronic obstructive pulmonary disease,?’
pulmonary vasculitis,’® and interstitial lung disease.?”

Outside of pulmonary medicine, the field of oncology has
had tremendous success in therapeutically targeting endo-
types defined by specific cancerous mutations. For example,
the first step toward precision medicine in lung cancer was
the development of chemotherapy regimens based on cancer
histology and stage.?® With the advent of mutation-targeted
therapies, lung cancer therapeutics have now progressed to
precision medicine based on tumor molecular profiles. Spe-
cifically, epidermal growth factor receptor (EGFR) mutations
predict response to EGFR tyrosine kinase inhibitors gefitinib,
erlotinib, and afatinib,?®3® and anaplastic lymphoma kinase
(ALK) mutations predict response to crizotinib.3' In earlier
trials of unselected non-small cell lung cancer patients, some
of these same therapeutics either failed to demonstrate a
benefit or only demonstrated a marginal benefit.3>33 It was
the recognition of biologically defined endotypes that
resulted in the identification of subgroups of patients most
likely to therapeutically respond. Similar molecular-targeted
therapeutics have been developed in breast cancer, color-
ectal cancer, melanoma, and others.>*-3°

While there is a significant amount to learn from the
success of subtyping asthma and cancer, the ARDS phenotype
has unique challenges that make this task difficult. First, the
acute and critical nature of ARDS makes subtyping or endo-
typing ARDS extremely time sensitive to provide a targeted
therapeutic early in the syndrome. If biomarkers are used to
subtype ARDS, they must be easily and rapidly measured with
high reproducibility and validity. Second, pathology via biopsy
is not commonly obtained in ARDS due to the risks and
therefore will not likely routinely be used for ARDS phenotype
identification as it is in cancer. Third, clinicians frequently fail
to recognize ARDS, which is a necessary first step in subtype
identification. Despite these challenges, significant recent
progress has been made in phenotyping ARDS (=Table 1),
and researchers are consistently moving toward understand-
ing biologically defined endotypes of the syndrome. There is
substantial overlap between the terms phenotype, subpheno-
type, and endotype, and a subphenotype initially defined by a
clinical or radiographic factor may subsequently be found to
identify unique biology.

Severity Phenotypes of ARDS

The Berlin Definition of ARDS proposed three severity phe-
notypes; mild, moderate, and severe, defined by the ratio of
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Table 1 Phenotypes of acute respiratory distress syndrome
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Phenotype Description Differences Potential therapies References
Hypoxia severity Berlin categories: * Severity of hypoxia * Prone positioning 4.7.41
phenotypes Mild: 200 < PaO,/FiO, < 300 | * DAD more likely pathology (PaO,[FiO, < 150)
Mod: 100 < PaO,/FiO, < 200 in severe ¢ Cisatracurium
Severe: PaO,/FiO, < 100 (PaO,/FiO, < 150)
ARDS by Precipitating factors including: | e« Differences in ARDS risk, >3,56-60
precipitating sepsis, trauma, pneumonia, severity, and mortality
risk factor aspiration, transfusion,
pancreatitis
Direct versus Direct: pneumonia, pulmon- | e Epithelial vs. endothelial « Epithelial vs. 61.64-74
indirect ary contusion, aspiration injury endothelial targeted
lung injury Indirect: nonpulmonary « Differences in mortality therapies
sepsis, nonthoracic trauma, * Indirect more likely to
transfusions respond to PEEP
Timing of onset Early onset developing <48 h | e Different clinical 75-78
phenotypes from admission versus late characteristics
onset >48 h from admission | ¢ Elevated RAGE and Ang-2
in early onset
Radiographic Nonfocal/diffuse vs. focal| * Differences in morality, « Diffuse more likely to | 8186
phenotypes lobar on chest imaging lung compliance, indirect respond to PEEP
lung injury, and plasma
RAGE level
Genetic defined Endotypes of ARDS defined * Distinct ARDS risk, ¢ Therapies targeting 88,89
endotypes by genetic variability that outcome, or response to biology implicated by
alters ARDS risk, outcome, or treatment genetic variants
response to treatment
Biomarker defined Endotypes of ARDS defined * Distinct ARDS risk, « Therapies targeting 109-119,124
endotypes by biomarker measurements outcome, or response to biology implicated by 130,131
treatment biomarker elevation
Hyperinflammatory | Endotypes of ARDS deter- * Hyperinflammatory * Phenotypes 142-144,147
versus uninflamed mined from unbiased latent characterized by elevated responded differently 148,151,152
class analysis and cluster plasma inflammatory to PEEP and fluid
analysis biomarkers, and higher strategy
mortality e Survival benefit
observed in response
to simvastatin in
hyperinflammatory
phenotype

Abbreviations: Ang-2, angiopoietin-2; ARDS, acute respiratory distress syndrome; DAD, diffuse alveolar damage; PEEP, positive end expiratory

pressure; RAGE, receptor for advanced glycation end-products.

Pa0, to Fi0,.* When applied to multicenter clinical datasets,
the higher severity stages were associated with a higher
mortality, ranging from 27% for mild, 32% for moderate, and
45% for severe ARDS. While targeting the Pa0O,/FiO, ratio as a
surrogate outcome for mortality has largely failed in clinical
trials, the Berlin severity categories have the potential to
serve for prognostic enrichment.3”-38 Prognostic enrichment
is a strategy whereby a clinical trial enrolls patients more
likely to experience an outcome of interest, reducing the
sample size needed to detect a treatment effect of the
intervention.>® In addition to predicting mortality, severity
categories based on the PaO,/FiO, ratio may also help
identify distinct subtypes of disease. In the previously dis-
cussed autopsy study of 356 patients with ARDS, DAD was
only present in 45%; however, those patients with moderate
and severe ARDS were significantly more likely to have DAD
on pathology.'” This finding suggests that the moderate and
severe subtypes identify a more homogeneous population

with ARDS. Therefore, the moderate-severe Berlin severity
categories may also serve for predictive enrichment. Pre-
dictive enrichment is a strategy by which patients more
likely to respond to a specific therapy are enrolled in a clinical
trial* If an intervention in ARDS is aimed at treating the
biology that results in DAD, it may be more likely to have a
demonstrable benefit in the more homogeneous moderate to
severe subgroups of ARDS.

An approach targeting a severe phenotype of ARDS based
on the Pa0,/FiO, ratio has been successful in two rando-
mized controlled trials, the ARDS et Curarisation Systema-
tique (ACURASYS) study and the Proning Severe ARDS
Patients (PROSEVA) study.”*' In ACURASYS, 340 ARDS
patients with a Pa0O,/FiO, < 150 mm Hg were randomized
to 48 hours of cisatracurium or placebo while heavily sedated
early in ARDS.*' Given the potential adverse effects of
systemic paralysis and heavy sedation,*?*3 the study only
enrolled patients with severe gas-exchange impairments
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based on a PaO,/Fi0, < 150 mm Hg.** The early use of
systemic cisatracurium significantly improved adjusted
90-day survival (hazard ratio [HR]: 0.68; 95% confidence
interval [CI]: 0.48-0.98) and increased time off the ventilator
without increasing muscle weakness. In PROSEVA, 466 ARDS
patients also with a Pa0O,/FiO, less than 150 mm Hg were
randomized to undergo prone positioning for at least
16 hours a day or to be left supine. The PROSEVA investigators
selected the 150 mm Hg cutoff based on prior meta-analyses
of negative clinical trials that suggested a benefit to prone
positioning only among those subjects severely hypoxemic at
the time of enrollment.*>#® Early prone positioning resulted
in a reduction in 90-day mortality from 41.0 to 23.6% (HR:
0.44; 95% CI: 0.29-0.67). These two trials demonstrate the
success of using a PaO,/FiO, ratio to identify severe ARDS
phenotypes for clinical trial enrollment, but this potential
expands beyond the Pa0O,/FiO, ratio. Several severity-scoring
systems are used in clinical research, predict mortality, and
may be useful to identify severity phenotypes of ARDS.*/~4
Additionally, while they are not included in the Berlin
Definition, severity phenotypes based on respiratory para-
meters (e.g., lung compliance, dead space, or oxygenation
ratio) also have the potential to provide useful information
for future prognostic or predictive enrichment.>~>2

Impact of Clinical Variables on ARDS
Phenotypes

In the original description of ARDS, Ashbaugh and colleagues
described a series of ARDS cases developing after the onset of
heterogeneous precipitating illnesses.” The authors high-
lighted the similarity in the respiratory syndrome these
patients developed despite distinct clinical characteristics;
however, subsequent authors have recognized significant
heterogeneity in ARDS based on several clinical variables.
The first source of clinical heterogeneity described was the
underlying precipitating factor for ARDS. The incidence of
ARDS varies significantly across patients with different pre-
cipitating factors, ranging from 30 to 40% of sepsis patients to
10 to 25% of severe trauma patients.”>™’ In addition, the
severity, biology, and outcomes vary as well. Sepsis-related
ARDS is associated with a higher disease severity and higher
mortality than nonsepsis-related ARDS, partially explained
by the severity of illness as well as comorbidities.®>° Con-
versely, trauma-associated ARDS has been reported to be
associated with a lower mortality than nontrauma-asso-
ciated ARDS even after adjusting for baseline clinical factors
and severity of illness.?® In one study, patients with trauma-
associated ARDS also had significantly lower plasma levels of
markers of epithelial and endothelial injury but not markers
of acute inflammation or disordered coagulation, suggesting
biologic differences by ARDS precipitating risk factor.?
Another traditional way to subphenotype ARDS is by
grouping patients into direct (or pulmonary) versus indirect
(or extrapulmonary) ARDS.>®" The majority of direct lung
injury results from pneumonia, aspiration, and pulmonary
contusion, while the majority of indirect lung injury results
from nonpulmonary sepsis, nonthoracic trauma, and trans-
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fusions.%? This categorization is imperfect because many
patients have mixed etiologies for lung injury and an overlap
of direct and indirect insults®3; however, several physiologic,
pathologic, and biologic differences between direct and
indirect ARDS have been reported. Pathologically, direct
ARDS has been associated with significantly more alveolar
collapse, fibrin deposition, and alveolar wall edema than
indirect ARDS in an autopsy study.64 Radiographically, direct
ARDS has been characterized as a combination of ground
glass opacities and consolidation with asymmetry of the
consolidated areas.®>~¢7 Conversely, indirect ARDS has been
characterized as predominantly ground glass opacities with-
out significant consolidation and a more central distribution.
Physiologically, patients with direct ARDS have been
reported to have a higher lung elastance at baseline relative
to indirect ARDS, but may be less likely to respond to
PEEP.57-%8 There is also evidence that direct and indirect
ARDS may differ biologically as well. Direct ARDS is asso-
ciated with higher plasma concentrations of biomarkers of
epithelial injury, including surfactant protein D (SP-D) and
the receptor for advanced glycation end-products
(RAGE).5%70 In contrast, indirect ARDS is associated with
higher plasma concentrations of biomarkers of endothelial
injury, including angiopoietin-2 (Ang-2) and von Willebrand
factor (VWF).8%71-73 Additionally, several genetic poly-
morphisms have been reported to be associated with only
direct or indirect ARDS but not the other subphenotype.’*
Despite the extensive research that has gone into character-
izing direct and indirect ARDS, the two phenotypes overlap
substantially, and their clinical utility is thus far limited.

The Berlin Definition requires ARDS to develop within
1 week of the onset of the underlying precipitating illness*;
however, several researchers have identified significant het-
erogeneity based on the timing of onset of ARDS within that
week.”>78 Croce and colleagues first described early- and
late-onset posttraumatic ARDS as distinct.’® These authors
defined early-onset ARDS as occurring within 48 hours after
presentation and late-onset occurring beyond 48 hours after
admission. Early-onset ARDS was associated with more
profound hemorrhagic shock while pneumonia was signifi-
cantly associated with late-onset ARDS. More recently, latent
class analysis (LCA) was used to identify subphenotypes of
posttraumatic ARDS based on the certainty of the ARDS
diagnosis over time.”” Similar to the earlier study, the
48-hour time point was identified to separate early-onset
and late-onset phenotypes. The early-onset phenotype was
again associated with hemorrhagic shock and the severity of
thoracic trauma compared with the late-onset phenotype.
Additionally, early-onset ARDS was also associated with
higher plasma levels of RAGE and Ang-2, suggesting a
biological distinction characterized by an alveolar capillary
barrier injury pattern in this phenotype. Zhang and collea-
gues studied patients with moderate to severe ARDS pre-
cipitated by a variety of ARDS risk factors, again dividing
patients between early- and late-onset ARDS at 48 hours
after admission.”® In this study, late-onset ARDS was asso-
ciated with a higher mortality than early-onset ARDS despite
lower severity of illness scores at admission.
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One of the challenges in subphenotyping ARDS based on
timing of ARDS onset is identifying the exact time of onset of
the precipitating illness. In all of these studies, the onset time
was the time of emergency department presentation or
intensive care unit admission. In trauma, this time point is
likely within several hours of traumatic injury, but in other
precipitating syndromes such as sepsis, the exact beginning
of the sepsis syndrome is not always clear. Additionally,
variability may exist if the ARDS onset time is based on
the time when all ARDS criteria are met (oxygenation and
radiograph criteria) versus the time point when the first
criterion is met.”%8% Despite a wealth of studies describing
subphenotypes of ARDS based on clinical factors, it is impor-
tant to remember that no therapies specific to a clinical
subphenotype have been proven effective. Conversely, data
from the landmark ARDS Network ARMA trial suggests lung
protective mechanical ventilation is effective in multiple
clinical ARDS subtypes.®

Radiographic Phenotypes of ARDS

Radiographically, ARDS has largely been described as two
phenotypes, nonfocal/diffuse ARDS and focal/lobar ARDS,
based on morphologic characteristics on computed tomogra-
phy (CT).2" While there is significant correlation between
these two categories and the clinical categories of direct and
indirect lung injury, they do not fully overlap. ARDS categor-
ized by diffuse rather than focal infiltrates has been associated
with a higher mortality, lower lung compliance, more com-
monly indirect lung injury, and a lower inflection point on the
pressure-volume curve of the lung.2>83 Additionally, authors
have reported distinct responses to the application of PEEP and
recruitment maneuvers based on radiographic pheno-
type.848 Ppatients with nonfocal or diffuse ARDS appear to
have significant alveolar recruitment without significant over-
distension with the application of increasing PEEP, while
patients with focal ARDS tend to develop significant over-
distension without recruitment. Supporting a biologic basis to
radiographic phenotypes, another study reported a strong
association of plasma concentrations of the epithelial biomar-
ker RAGE and nonfocal CT based lung-imaging patterns in
patients with ARDS.83 A clinical trial is currently pending,
which randomized patients to receive a traditional low tidal
volume ventilation protocol versus a mechanical ventilation
protocol tailored to radiographic lung morphology.8®

Genetic and Biomarker-Defined Endotypes
of ARDS

Approaches to phenotype ARDS based on clinical, radiologic,
or severity variables are intuitive, particularly to clinicians
who regularly treat ARDS; however, these approaches have
only been modestly successful and fail to fully differentiate
biologic differences that have the potential to be pharmaco-
logic targets. Multiple biologic pathways have been impli-
cated in ARDS, including endothelial and epithelial
dysfunction, innate immune activation with immune cell
recruitment, intravascular coagulation, and intraalveolar
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fibrosis.®” However, the degree to which each pathogenic
pathway is dominant in each individual patient is likely
variable and based on a patient’s clinical characteristics
and genetics, as well as time from insult.38 One approach
to identify endotypes of ARDS is to classify patients based on
genetic variability or based on the concentrations of biomar-
kers measured during critical illness that represent targeta-
ble biologic processes.

The heritability of ARDS is difficult to measure as the
requirement for a major environmental insult precludes
family pedigree studies; however, there is significant evi-
dence that ARDS risk is altered by genetic variability.”48882
Evolutionary pressures such as hemorrhagic shock, host-
pathogen interactions, dehydration, and starvation select
on mechanisms important in critical illness, including
ARDS.?® Therefore, it is reasonable to assume that evolu-
tionary pressures which shape modern human genetic
diversity impact ARDS risk and may be useful in identifying
ARDS endotypes more likely to respond to novel therapeu-
tics. Many discrete genetic polymorphisms in genes related
to innate immunity, alveolar-capillary barrier function,
surfactant function, oxidative stress, and other pathogenic
pathways have been implicated in ARDS.%%8% An extensive
review of these genetic associations is beyond the scope of
this article, but a few examples illustrate the potential
impact of genetically defined endotypes on ARDS
therapeutics.

One of the earliest reported genetic associations with ARDS
is with a common deletion located in the human ACE gene that
results in a higher plasma and tissue angiotensin converting
enzyme (ACE) activity and a higher risk of ARDS.’"%? The
renin-angiotensin system has long been implicated in ARDS
pathogenesis.”> ACE is responsible for the conversion of angio-
tensin I to angiotensin Il in the pulmonary vasculature, which
resultsinvasoconstriction among other effects.® Therapeutics
that negatively regulate the ACE axis, including ACE2, are
currently being developed for ARDS.>> A population that has
abaseline higher ACE activity, such as one predicted by genetic
variability in the ACE gene, might be an ideal population in
which to test such a therapeutic.

Another relationship that has the potential to identify a
genetically defined endotype is the association between ABO
histo-blood type A and increased risk of ARDS.°®*” The ABO
gene encodes an enzyme responsible for placing terminal
carbohydrate modifications on red blood cells as well as
endothelial cells, epithelial cells, and platelets.’® Variation in
the ABO gene that determines ABO blood type is thought to
have evolved via historic human-pathogen interactions,
including with malaria.’® The ABO gene is now recognized
as among the most pleiotropic (one gene affecting multiple
phenotypes) genes in the genome, and has been associated
with multiple diseases and quantitative traits.'01%4 with
regard to ARDS, ABO variation that determines blood type is
strongly associated with plasma levels of multiple endothe-
lial-derived glycoproteins important in ARDS, including
VWEF, intercellular adhesion molecule 1 (ICAM-1), and Ang-
2.104-108 1t is possible that a therapeutic targeting these
proteins or the endothelium in general could have a distinct
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effect in different blood types, a genetic trait that is easily
accessible clinically.

Similar to genetics, another approach to endotyping ARDS
is to measure biomarkers representative of the activation of
particular biologic pathways. These biomarkers may then be
used to enroll patients in a clinical trial targeting their biology.
Multiple plasma biomarkers have been reported to predict
ARDS or ARDS outcome, including markers of inflammation
(e.g., interleukin (IL)-6, IL-8),'%%110 endothelial activation and/
or injury (e.g., Ang-2, ICAM-1, VWF),'""=113 epithelial injury
(e.g., RAGE, SP-D),''*1"> and impaired coagulation (e.g., pro-
tein C)."'%117 One of the most promising plasma biomarkers
for endotype identification in ARDS is Ang-2. Plasma Ang-2 is
an established biomarker and mediator of endothelial activa-
tion and permeability and is strongly associated with ARDS
risk and outcome.”’?""" Genetic variation in the Ang-2 gene
(ANGPT2) is associated with ARDS risk,"'®119 and exogenous
administration of Ang-2 potentiates lung injury in rodent
models.'?? These data strongly suggest that Ang-2 causally
contributes to ARDS pathogenesis; however, it is often difficult
to distinguish biomarkers that causally contribute to disease
and should be therapeutically targeted from biomarkers that
only correlate with disease. For example, in cardiology the
plasma low-density lipoprotein concentration causally con-
tributes to heart disease and is therapeutically targeted while
C-reactive protein predicts disease risk but does not causally
contribute to heart disease.'?"1?2 One method to distinguish
potentially causal from correlative biomarkers with observa-
tional data is mendelian randomization (MR) analysis.'?> In
MR, an individual’s genetic background is used as an instru-
mental variable to infer causality of a measured biomarker. In
the case of Ang-2, MR analysis strongly suggests that plasma
Ang-2 causally contributes to ARDS and should be prioritized
for drug development.'?* It is possible that an endothelial
endotype of ARDS defined by elevated plasma Ang-2 may be
the group most likely to respond to Ang-2-targeted therapies.

Another plasma biomarker that may identify an endotype of
ARDS is the IL-1 receptor antagonist (IL1RA). IL1RA is an
inhibitory anti-inflammatory cytokine that competes with
proinflammatory cytokines IL-1a and IL-1B to bind the IL-1
receptor without triggering receptor signaling.'®® In a large-
scale genetic study, a coding genetic variant in the IL1RA gene
(IL1RN) was associated with decreased risk of ARDS in multiple
critically ill populations, as well as increased plasma IL1RA in
the setting of sepsis and trauma.'?® These findings suggest that
the coding variant in ILIRN confers protection from ARDS by
increasing plasma IL1RA. Therefore, IL1RA has high potential
for therapeutic benefit in ARDS. Three randomized placebo-
controlled trials tested human recombinant IL1IRA in sepsis,
including patients with ARDS, but failed to demonstrate a
benefit.'?’~1?% In a retrospective secondary analysis of one of
these trials, Meyer et al demonstrated significant heterogeneity
of treatment effect based on plasma concentrations of IL1RA
measured at study enrollment.’3° Patients with a higher endo-
genous IL1RA had a statistically significant survival benefit to
recombinant IL1RA therapy, while those with lower IL1RA did
not. The test for interaction was also statistically significant,
suggesting a true difference in the treatment effect between
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groups stratified by measured endogenous IL1RA. While it may
be counterintuitive that patients with high endogenous IL1RA
also had a benefit to the administration of recombinant IL1RA,
endogenous IL1IRA may be serving as a biomarker of activation
of the entire IL-1 axis. In the study conducted by Meyer et al,
IL1RA was more easily measured than the proinflammatory
marker of the IL-1 axis, IL-1f. Future precision trials of recom-
binant IL1RA for an IL-1 axis endotype of ARDS warrant further
consideration. Other promising endotype-defining biomarkers
that could be targeted therapeutically include soluble RAGE
(sRAGE), thrombomodulin, and tumor necrosis factor receptor-
1 (TNFR-1), among others,!14131-133

Unbiased Approaches to Endotype ARDS

As our understanding of the complex biology of ARDS has
improved, mathematical and statistical methods to under-
stand heterogeneity have also advanced. Cluster analysis
techniques, such as hierarchical or k-means clustering,
have been used to identify groups within a larger population
with similar characteristics. As discussed previously, these
methods have been used successfully in asthma to identify
subphenotypes with distinguishable clinical characteristics
and response to asthma therapies.21 22 In critical care, Wong
and colleagues used cluster-based techniques to identify two
subphenotypes of pediatric sepsis with distinct outcomes
using whole blood gene expression data.'>*'3> The two
subphenotypes were subsequently found to have distinct
responses to systemic corticosteroids.3® Similarly, in adult
sepsis populations, researchers have identified two sepsis
response signatures in peripheral blood leukocyte gene
expression data using hierarchical clustering.'>”-138 The first
sepsis response signature was characterized by an immuno-
suppressed phenotype and was associated with a higher
mortality than the second sepsis response signature. Another
group of investigators used similar methods to identify four
phenotypes of sepsis with significant overlap with the two
sepsis response signatures.139 Cluster analyses have advan-
tages including an unbiased mathematical approach to the
data based on characteristics introduced to the model rather
than preexisting assumptions. This approach allows for the
discovery of biologically significant endotypes that may not
be readily apparent. However, cluster-based approaches are
limited in that they only identify heterogeneity based on the
variables considered and can suffer from problems with
overfit data and challenges with replication,140

Another method to endotype syndromes, used with some
success in ARDS and similar to cluster analysis, is LCA. While
cluster analysis is a mathematical method to identify clus-
ters, LCA is a statistical modeling method that identifies
unobserved (latent) groups within a heterogeneous popula-
tion."! In ARDS, LCA has been used to identify two distinct
subphenotypes characterized by distinct biology, outcomes,
and response to therapy.#?7'%4 Initially using data from
patients enrolled in the NHLBI ARDSNet ARMA and ALVEOLI
trials,® 14> LCA was applied to clinical and plasma biomarker
data and identified a hyperinflammatory phenotype of
ARDS.'? This phenotype was characterized by higher
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plasma concentrations of inflammatory biomarkers, worse
shock, and higher mortality. Additionally, the effect of treat-
ment with PEEP differed based on phenotype whereby the
high PEEP strategy appeared to be more effective in the
hyperinflamed phenotype. The identified subphenotypes
were subsequently reported to be largely stable over the
first 3 days of trial enrollment,'*? and were validated in a
post-hoc analysis of the FACTT trial.'#414® Additionally, the
ARDS subphenotypes responded differently to the fluid
liberal versus conservative strategy tested in the FACTT trial.
Specifically, the hyperinflamed subtype had a higher mor-
tality with a conservative fluid strategy while the other
subtype had a lower mortality with a conservative fluid
strategy. These findings again suggest heterogeneity in the
response to therapies that have previously been applied in a
“one size fits all” paradigm. In this study, the authors also
developed a simple model based on three biomarkers (IL-8,
TNFR1, and bicarbonate) to categorize patients accurately in
the two subphenotypes. If validated prospectively, this sim-
pler model may remove the need to re-perform the compli-
cated LCA analysis to phenotype ARDS patients making
endotype identification potentially possible clinically.

LCA has also been applied to data from pharmacologic
trials, specifically those studying the efficacy of statins for
ARDS.'#7-148 I secondary analyses of both the HARP-2 trial
investigating simvastatin and the SAILS trial investigating
rosuvastatin,'#>1°% LCA identified two subphenotypes of
ARDS with similar biological characteristics, outcomes, and
distributions as the prior trials."”"'8 While the HARP-2 and
the SAILS trials were negative, the hyperinflammatory sub-
phenotype of ARDS had improved survival with simvastatin
compared with placebo. This survival benefit was not seen
with rosuvastatin in SAILS, for reasons that may be related to
differences in the two statins’ biology, dosing, clinical trial
design, or patient populations. Despite identifying benefits
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to PEEP, fluid strategy, and simvastatin specific to LCA-
defined endotypes, these analyses are post hoc and should
not be implemented without prospective trials.

Other investigators have also applied clustering techniques
to an observational cohort study of patients with ARDS.'®' In
one study, cluster analysis was performed using 20 plasma
biomarkers of inflammation, coagulation, and endothelial
activation, without any clinical data. Again, two subpheno-
types of ARDS were identified and described as uninflamed
and reactive. The reactive phenotype was associated with a
higher mortality and could be accurately identified using five
biomarkers (IL-6, interferon gamma, angiopoietin 1/2, and
plasminogen activator inhibitor-1). These authors subse-
quently demonstrated that a third of genes are differentially
expressed in whole blood between the two subphenotypes,
providing further evidence of significant biological heteroge-
neity.'>? These identified subphenotypes share similar char-
acteristics to those identified in the LCA analyses conducted by
Calfee and colleagues, though the precise degree of overlap
between the two approaches remains unknown. =Table 2
includes a comparison of the subphenotypes of ARDS identi-
fied via LCA or cluster analysis.

Implications for Clinical Trials

Given the number of failed past trials, it is clear that our design
of clinical trials in ARDS needs to evolve, and the preceding
evidence suggests that incorporating endotypes and/or sub-
types of disease into clinical trials in ARDS may offer an
improved approach. Prognostic enrichment based on the
severity of oxygenation impairment has demonstrated some
success”1; however, the true potential of precision medicine
rests on predictive enrichment based on biologically defined
phenotypes or endotypes. Endotypes defined by one or multi-
ple biomarkers and/or clinical characteristics have the

Table 2 Unbiased approaches to identify ARDS endotypes applied to populations from five clinical trials and one cohort study

Cohort Phenotype % of study 90-day Heterogeneity of Reference
population mortality treatment response

ARMA ¢ Hypoinflammatory 67% 23% 142
¢ Hyperinflammatory 33% 44%

ALVEOLI ¢ Hypoinflammatory 74% 19% Differences in response to a 142
* Hyperinflammatory 26% 51% high PEEP strategy

FACTT ¢ Hypoinflammatory 73% 22% Differences in response to a liberal 144
¢ Hyperinflammatory 27% 45% vs. conservative fluid strategy

MARS + Uninflamed 48% 22%° 151
* Reactive 52% 38%°

HARP-2 ¢ Hypoinflammatory 65% 17% Differences in response to 148
¢ Hyperinflammatory 35% 39% simvastatin therapy

SAILS * Hypoinflammatory 60% 21% No differences based 147
¢ Hyperinflammatory 40% 38% on rosuvastatin

Abbreviations: ALVEOLI, Assessment of Low Tidal Volume and Elevated End-expiratory volume to Obviate Lung Injury Study; ARDS, acute respiratory
distress syndrome; ARMA, Prospective, Randomized, Multicenter Trial of 12 vs. 6 mL/kg Tidal Volume Positive Pressure Ventilation for Treatment of
Acute Lung Injury and Acute Respiratory Distress Syndrome; FACTT, Fluid and Catheter Treatment Trial; HARP-2, HMG-CoA Reductase Inhibition in
Acute Lung Injury to Reduce Pulmonary Dysfunction Trial; MARS, Molecular Diagnosis and Risk Stratification for Sepsis Cohort Study; PEEP, positive
end expiratory pressure; SAILS, Statins for Acutely Injured Lungs from Sepsis Study.

?30-day mortality.
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potential to select patients most likely to benefit from new
pharmacologic therapies targeting specific biologic pathways.
Clinical trial enrollment could start by measuring a specific
plasma marker and only including those subjects over a
prespecified threshold concentration. Alternatively, innova-
tive adaptive trial designs could enroll all patients regardless of
biomarker concentration, but subsequently adjust randomiza-
tion so patients not benefiting from a therapy based on their
biomarker level are less likely to be randomized to the therapy
within a clinical trial.’>3

Several challenges exist before biomarker-driven clinical
trials for ARDS can be initiated. First, biomarkers must be
rapidly measurable to be of utility in critical care. The
technology to measure protein biomarkers or gene expres-
sion rapidly is available; however, few tests are currently
available clinically. Second, biomarker-driven trials require
more knowledge of the performance, stability, and respon-
siveness of the biomarker over time as patients progress to
ARDS. Third, thresholds of biomarker levels by which
patients may benefit from a therapy are largely unclear
and may require further prospective testing or initial enroll-
ment of all patients in an adaptive clinical trial. Fourth, we
have limited mechanistic understanding of ARDS endotypes
and must have strong evidence that a target drug works only
in one subtype prior to initiating a targeted clinical trial.

Conclusions

In conclusion, ARDS is a heterogeneous syndrome with a lack
of therapies directed at syndrome biology. In the last several
years, distinct subphenotypes of ARDS have been described
with distinct clinical, pathologic, radiographic, and/or bio-
logic characteristics. Early evidence of differential response
to therapies based on subtypes defined by plasma biomar-
kers and clinical characteristics has been reported. Future
work should focus on furthering our mechanistic under-
standing of ARDS endotypes, identifying more important
ARDS phenotypes, and developing targeted therapies with
the ultimate goal of applying these therapies to the patients
most likely to respond to them.
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