CDS in a Learning Health Care System: Identifying Physicians’ Reasons for Rejection of Best-Practice Recommendations in Pneumonia through Computerized Clinical Decision Support

Barbara E. Jones1,2 Dave S. Collingridge3 Caroline G. Vines3 Herman Post4 John Holmen4 Todd L. Allen5 Peter Haug4 Charlene R. Weir6 Nathan C. Dean7

1 VA Salt Lake City IDEAS Center, VA Salt Lake City Healthcare System, Salt Lake City, Utah, United States
2 Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, Utah, United States
3 Intermountain Healthcare, Murray, Utah, United States
4 Homer Warner Center for Informatics, Intermountain Healthcare, Murray, Utah, United States
5 Department of Emergency Medicine, Intermountain Healthcare, Murray, Utah, United States
6 Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
7 Division of Pulmonary and Critical Care Medicine, Intermountain Healthcare and University of Utah, Murray, Utah, United States

Address for correspondence Barbara E. Jones, MD, MSc, VA Salt Lake City IDEAS Center, VA Salt Lake City Healthcare System, 500 Foothill Drive Building 2, Salt Lake City, UT 84148-0002, United States (e-mail: barbara.jones@hsc.utah.edu).

Abstract

Background Local implementation of guidelines for pneumonia care is strongly recommended, but the context of care that affects implementation is poorly understood. In a learning health care system, computerized clinical decision support (CDS) provides an opportunity to both improve and track practice, providing insights into the implementation process.

Objectives This article examines physician interactions with a CDS to identify reasons for rejection of guideline recommendations.

Methods We implemented a multicenter bedside CDS for the emergency department management of pneumonia that integrated patient data with guideline-based recommendations. We examined the frequency of adoption versus rejection of recommendations for site-of-care and antibiotic selection. We analyzed free-text responses provided by physicians explaining their clinical reasoning for rejection, using concept mapping and thematic analysis.

Results Among 1,722 patient episodes, physicians rejected recommendations to send a patient home in 24%, leaving text in 53%; reasons for rejection of the recommendations included additional or alternative diagnoses beyond pneumonia, and comorbidities or signs of physiologic derangement contributing to risk of outpatient failure that were not processed by the CDS. Physicians rejected broad-spectrum antibiotic recommendations in 10%, leaving text in 76%; differences in pathogen risk...
Background and Significance

As the leading infectious cause of death in the United States, pneumonia is a major target for quality improvement. Timely and accurate decision-making surrounding diagnosis, site of care, and treatment with antibiotics is crucial to optimize outcomes and typically occurs through a complex integration of information from the patient and electronic health record (EHR) (~Fig. 1). Adherence to best-practice guidelines for the management of pneumonia has been associated with improved outcomes.\(^1\)\(^–\)\(^3\) Local adaptation and implementation of best-practice guidelines is thus a grade I recommendation.\(^4\)\(^,\)\(^5\) However, adherence to guidelines is low, and widespread variation in practice and outcomes exists.\(^6\)\(^–\)\(^10\) which may be due to provider uncertainty in the guidelines.\(^11\) The best approaches to adaptation of evidence-based practice across health care systems are not well defined, and differences in settings, patient populations, and providers may create contextual challenges to standardizing practice.\(^12\)

Computerized clinical decision support (CDS) embedded in the EHR is a promising way to implement best practices reliably and sustainably across a health care system,\(^13\) although few CDS tools for pneumonia have successfully impacted practice or outcomes.\(^14\)\(^–\)\(^16\) We implemented a computerized CDS for pneumonia, “ePneumonia,” across four emergency departments (EDs). In an ecological pre–post study design, we found that implementation of ePneumonia was associated with a reduction of 30-day mortality, increase in high-risk hospitalizations, and increase in first-line antibiotics use compared with three control EDs that used paper-based guidelines without the CDS (previously reported\(^17\)). However, we found no reduction in hospitalizations of low-risk patients, which we had anticipated based upon other implementation efforts\(^18\) and examination of baseline practice patterns.\(^19\) Computerized CDS offers the opportunity to probe more deeply into the rejection or adoption of best-practice recommendations, generate important feedback for CDS improvement, and enable us to learn from and engage physicians. We thus sought to examine physician interactions with the CDS to identify factors driving rejection or adoption of CDS recommendations.

Objectives

The aims of this study were to:
1. Track the adoption versus rejection of best-practice guideline recommendations provided to ED physicians through their interaction with a bedside CDS.
2. Examine clinical reasons provided by physicians for rejecting best-practice recommendations.

Methods

Setting and Intervention

Intermountain Healthcare comprises 22 hospitals in Utah and Idaho and has been a pioneer in the development of a clinically oriented electronic health data and CDS. In 1998, a paper-based pneumonia guideline was implemented with moderate success in all EDs. In 2011, we implemented the computerized CDS tool at four of seven EDs in the urban central region of Salt Lake City for ED physicians caring for patients diagnosed with suspected pneumonia that integrates individual patient data with guideline-based recommendations at the point of care.

Description of CDS Design and Implementation Process

ePneumonia is integrated into the physician workflow at a critical point in decision-making, when the physician has typically completed an initial evaluation of the patient and is synthesizing the patient’s history, physical examination, and results of laboratory and radiographic tests to form a diagnosis and treatment plan. The tool initially screens all ED patients with chest imaging for evidence of pneumonia based upon a Bayesian analysis of clinical data, including natural language processing of chest imaging reports, vital signs, chief complaint, and laboratory values. If the estimated likelihood of pneumonia exceeds 40%, the provider is alerted through the electronic ED patient tracking board, which displays continuously updated information on ED patient census and status displayed on every ED work station computer. Additionally, the physician can initiate ePneumonia independently of the screening tool through a desktop icon. If he/she confirms suspected pneumonia, ePneumonia proceeds to extract patient age and comorbidities, vital signs, nursing assessments, laboratory values, prior microbiology data, and radiographic evidence of pleural effusions and multilobar infiltrates. Using this information, ePneumonia automatically calculates a 30-day mortality risk estimate and identifies hospital admission criteria. The tool integrates the patient data, risk assessments, and guideline-based management recommendations, including site of care (intensive care unit [ICU], hospital ward, or outpatient), diagnostic studies, and antibiotic selection, onto four sequential screens.

All decisions and orders for patient care remain under the control and responsibility of the ED provider, who is fully supported regardless of whether he/she accepts or rejects any of the recommendations. When a recommendation is rejected, ePneumonia asks the physician to provide a reason. Common reasons for rejection of recommendations identified in the literature are offered in a structured drop-down menu; however, a text box is also available for physicians to leave unstructured text as either an addition or alternative to the prespecified responses.

We collaborated with clinician stakeholders during the development of ePneumonia through outreach to the four participating EDs, reviewing standard management of pneumonia with ED physicians and meeting with clinical leadership. We conducted preliminary testing of the tool in one of the EDs during December 2010 to May 2011, including face-to-face visits with physicians during clinical shifts to receive feedback to improve the design. ePneumonia was implemented into routine clinical care at four hospital EDs in May 2011. A usability survey of 72 physicians with experience using the CDS was conducted in November 2011, in which physicians reported high satisfaction, specifically in its usefulness for antibiotic recommendations and site-of-care decisions.

Participants

We identified all cases in which providers used ePneumonia during the period of December 1, 2011 through November 30, 2012. Providers could use the tool multiple times for the same patient to refresh the clinical data; when this occurred, we examined results only from the final iteration. Cases in which the tool was launched but not completed to a treatment recommendation were excluded.

Measurements

For each provider–CDS interaction, we measured rejection or adoption of two major recommendations: (1) site of care (hospitalization to ICU or medical ward, or discharge from the ED), and (2) antibiotic selection. Physicians could proceed to the site-of-care recommendation but then stop before receiving the antibiotic selection recommendation; for these cases, we evaluated the site-of-care recommendations only. When the physician rejected the tool recommendation, we collected structured data of prespecified reasons from the provided dropdown menu selections, as well as free-text entries entered by the physician. Levels of reported satisfaction with the CDS were also measured among those physicians who completed the postimplementation usability survey.

Analysis

Comparisons between proportions of cases with agreements/disagreements were tested for significance using Fisher’s exact and chi-square tests, where appropriate. We used generalized estimating equations analysis to examine the relationships between repeated measures of physician agreement (yes vs. no) with site-of-care and antibiotic recommendations and the following provider variables: age, gender, years worked, attending or resident, number of encounters, and usability of ePneumonia based on survey responses. We analyzed the unstructured text left by physicians rejecting recommendations by applying concept mapping, a mixed methods analysis that combines group sorting with multidimensional scaling.
ensure similar length and level of abstraction. Then, 15 practicing clinicians including physicians and nurse practitioners independently participated in a Delphi-type card sorting exercise, in which those cards that represented a similar concept were sorted together. We applied multidimensional scaling to the card sorting data by computing average distances between concepts and generated cluster trees according to average distances based upon complete linkage. N.D. and B.J. then identified themes representative of each cluster.

The study was approved by the Intermountain Institutional Review Board (IRB #1017598). Implied consent was obtained from all surveyed physicians by completion of the survey and from clinicians participating in the card-sorting exercise by their participation, and both were approved by the IRB; waiver of patient consent for CDS data collection was approved by the IRB. All statistical analyses were performed using SPSS (Version 19.0, IBM SPSS Statistics for Windows, Armonk, New York, United States) or STATA MP (Version 14.1, StataCorp, College Station, Texas, United States); the card-sorting exercise and concept mapping analysis was performed using the X-Sort software (http://xsortapp.com). Data analysis code is available upon request.

Results

The CDS provided site-of-care recommendations for 1,722 patient encounters, and antibiotic recommendations for 1,507 during the study period. Adoption of antibiotic recommendations was slightly higher at Intermountain Medical Center (95% vs. 89% at lowest-agreeing facility, \(p < 0.01 \)) we found no significant between-hospital differences in adoption of site-of-care recommendations.

Physicians rejected site-of-care recommendations in 16% of visits, of which 84% reflected a provider’s decision to place the patient in a higher-acuity site of care than recommended. Physicians rejected the outpatient recommendation in 24% of visits. Among the prespecified reasons for rejecting recommendations, physicians most commonly selected greater severity of illness than determined by the CDS, and uncontrolled comorbidities requiring hospitalization (\(\text{Table 1} \)). Providers rejecting site-of-care recommendations left free-text reasons for rejection in 53% of cases. Concept mapping and multidimensional scaling (\(\text{Fig. 2} \)) revealed two reasons for rejection of the outpatient recommendation that overlapped with prespecified constructs—severity of illness not extracted by the tool and clinical comorbidities—and three new themes: alternative or additional diagnoses, risks for outpatient failure due to functional status, and lack of access to care (\(\text{Table 1} \)).

Physicians rejected antibiotic recommendations in only 7% of cases. Medication allergies not extracted by the CDS were the most common prespecified reasons for rejection (\(\text{Table 1} \)). The most common antibiotic recommendation rejected was to prescribe broad-spectrum antibiotics for patients meeting the criteria for health care-associated pneumonia, with a rejection rate of 10%; 76% provided free-text reasons for deviating. Concept mapping and multidimensional scaling (\(\text{Fig. 3} \)) also revealed properties of the antibiotics such as allergy potential. New themes identified included additional patient history including previous treatments, preferences of the admitting hospital physician, and differences in pathogen risk assessment (\(\text{Table 1} \)).

Adoption of the site-of-care recommendation was positively associated with increased physician age, but negatively

Table 1 Reasons for rejection of best-practice recommendations

<table>
<thead>
<tr>
<th>Site-of-care ((N = 266, 16%) of all cases)</th>
<th>Percent ((N)) of disagreements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prespecified reasons for rejection</td>
<td></td>
</tr>
<tr>
<td>Patient sicker than estimated</td>
<td>56% (148)</td>
</tr>
<tr>
<td>Clinical judgment</td>
<td>22% (58)</td>
</tr>
<tr>
<td>Uncontrolled comorbid illnesses</td>
<td>17% (46)</td>
</tr>
<tr>
<td>Patient less sick than estimated</td>
<td>15% (43)</td>
</tr>
<tr>
<td>Patient preference</td>
<td>6% (17)</td>
</tr>
<tr>
<td>Oxygen requirements not appreciated by tool</td>
<td>5% (12)</td>
</tr>
<tr>
<td>No caregiver support</td>
<td>4% (10)</td>
</tr>
<tr>
<td>Critical care needs not appreciated by tool</td>
<td>3% (8)</td>
</tr>
<tr>
<td>Failed outpatient therapy</td>
<td>3% (8)</td>
</tr>
<tr>
<td>Can’t tolerate PO meds</td>
<td>1% (3)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>0.4% (1)</td>
</tr>
<tr>
<td>Provider left free-text entry</td>
<td>53% (141)</td>
</tr>
<tr>
<td>Additional themes from provider free-text entries</td>
<td></td>
</tr>
<tr>
<td>Alternative/additional diagnoses</td>
<td>21% (58)</td>
</tr>
<tr>
<td>Risk of outpatient failure</td>
<td></td>
</tr>
<tr>
<td>Functional status</td>
<td>4% (12)</td>
</tr>
<tr>
<td>Social comorbidities</td>
<td>2% (6)</td>
</tr>
<tr>
<td>Antibiotics ((N = 104, 7%) of all cases):</td>
<td></td>
</tr>
<tr>
<td>Prespecified reasons for rejection</td>
<td></td>
</tr>
<tr>
<td>Medication allergy</td>
<td>38% (39)</td>
</tr>
<tr>
<td>Immune compromised</td>
<td>10% (10)</td>
</tr>
<tr>
<td>Risk factors for MRSA not identified by tool</td>
<td>3% (3)</td>
</tr>
<tr>
<td>Risk factors for anaerobes not identified by tool</td>
<td>3% (3)</td>
</tr>
<tr>
<td>Provider left free-text entry</td>
<td>75% (78)</td>
</tr>
<tr>
<td>Additional themes from provider free-text entries</td>
<td></td>
</tr>
<tr>
<td>Previous treatments (antibiotics, interventions)</td>
<td>20% (20)</td>
</tr>
<tr>
<td>Preferences of admitting physician</td>
<td>11% (11)</td>
</tr>
<tr>
<td>Differences in pathogen risk assessment</td>
<td>9% (9)</td>
</tr>
</tbody>
</table>

Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; PO, twice daily.
associated with perception of the tool’s usefulness (► Table 2). In contrast, adoption of the antibiotic recommendations was positively associated with younger physician age and perception of the tool’s usefulness (► Table 3). We found no significant relationships between adoption and other provider characteristics including gender, utilization, attending versus resident status, or other survey responses of satisfaction with the CDS.

Discussion

In a four-hospital ED implementation of a computerized CDS for pneumonia that improved care process, we found that adoption of recommendations was high, but physicians who rejected best-practice recommendations in practice provided new reasons for rejection not previously highlighted in the literature, including alternative diagnoses and additional patient information used for decision-making not extracted by the tool that led to uncertainty in the recommendations. Examining physician–CDS interactions was feasible and provided insights to the implementation and adaptation of evidence-based practice in pneumonia.

Effective implementation of innovations in a complex system requires the ability of users to constantly reinvent and adapt innovations to different contexts. Effective adaptation of CDS can be supported through the participation by users at the individual patient level to generate continuous feedback. CDS designs are never perfect at the time of implementation and require some form of surveillance, but system-level monitoring can be time-
Table 2: Physician characteristics and adoption of site-of-care recommendation

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Odds Ratio</th>
<th>Lower 95% CI</th>
<th>Upper 95% CI</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≤ 40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 41–50</td>
<td>1.3</td>
<td>0.8</td>
<td>2.3</td>
<td>0.26</td>
</tr>
<tr>
<td>Age 51–60</td>
<td>2.7</td>
<td>1.3</td>
<td>5.5</td>
<td>0.007</td>
</tr>
<tr>
<td>Age > 60</td>
<td>4.1</td>
<td>1.5</td>
<td>5.5</td>
<td>0.003</td>
</tr>
<tr>
<td>Years worked in ED</td>
<td>0.95</td>
<td>0.75</td>
<td>0.99</td>
<td>0.009</td>
</tr>
<tr>
<td>Overall tool usefulness (1–5)</td>
<td>0.80</td>
<td>0.67</td>
<td>0.96</td>
<td>0.016</td>
</tr>
<tr>
<td>Usefulness for ordering diagnostic studies (1–5)</td>
<td>0.87</td>
<td>0.75</td>
<td>0.99</td>
<td>0.009</td>
</tr>
<tr>
<td>Experience of technical difficulties (1–5)</td>
<td>0.77</td>
<td>0.66</td>
<td>0.91</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ED, emergency department; GEE, generalized estimating equations.
Note: GEE regression model of N = 1,293 interactions and 58 physicians. Additional variables in the model found not to be significant included provider gender, number of tool uses per physician, reported usefulness of screening tool, and reported impact on clinical activity.

Table 3: Physician characteristics versus adoption of antibiotic recommendation

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Odds Ratio</th>
<th>Lower 95% CI</th>
<th>Upper 95% CI</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≤ 40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 41–50</td>
<td>0.22</td>
<td>0.11</td>
<td>0.45</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Age 51–60</td>
<td>0.30</td>
<td>0.11</td>
<td>0.84</td>
<td>0.02</td>
</tr>
<tr>
<td>Age > 60</td>
<td>0.26</td>
<td>0.10</td>
<td>0.65</td>
<td>0.004</td>
</tr>
<tr>
<td>Overall tool usefulness (1–5)</td>
<td>2.0</td>
<td>1.4</td>
<td>2.8</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ED, emergency department; GEE, generalized estimating equations.
Note: GEE regression model of N = 1,293 interactions, 58 physicians. Additional variables in the model included provider gender, years worked in ED, reported usefulness of screening tool, usefulness for ordering diagnostic studies, and usability of tool.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
documents to identify unstructured data such as social risk factors,41,42 can improve CDS’ ability to better align with physician decision-making and are the subjects of future work.

Other reasons for rejection represented new findings, which our thematic analysis of text revealed. We identified alternative diagnoses as an additional important reason to reject guideline recommendations not previously highlighted in the literature. Diagnostic uncertainty in pneumonia could be caused by many factors: several other diagnoses can present similarly, microbiologic confirmation is rarely identified, and accurate diagnosis can be challenged by time pressure and desire to treat.43,44 The diagnosis of pneumonia often changes during a hospital course.45 CDS may have an important role in supporting clinicians’ uncertainty, by synthesizing disconfirming evidence, suggesting alternative diagnoses, or recommending additional diagnostic testing. This may better align with decision-making, help reduce anchoring, and enhance providers’ ability to consider alternative diagnoses throughout the clinical course.

Our study has some limitations. The CDS required voluntary participation by providers; thus, our results represent feedback from only those physicians who used it. Our examination of provider characteristics suggested a relationship between provider age and guideline adherence for site-of-care and antibiotic use. However, additional provider and patient characteristics in a larger sample of physicians would better inform these relationships. Our focus was on capturing provider-reported reasons for deviating from guidelines, so we did not examine patterns of disagreements by patient characteristics, as previous studies have done.42 Reported reasons for rejecting may not always reflect the “true” reasons that physicians might deviate. Individuals are often not aware of factors affecting decision-making such as cognitive load, uncertainty, bias, economic or time pressures, or practice norms.46 Responses may also be influenced by social desirability.47 Citing patient factors as reasons for rejecting guidelines may be a more socially desirable and conscious response than reporting personal uncertainty. Our future work is directed at examining both reported and unreported patient and provider characteristics that influence physician behavior.

Our results have stimulated ongoing, continuous improvements of ePneumonia in our system. Since our evaluation, we have incorporated additional clinical data that providers reported using to make decisions, including continuous updates of patient data throughout the encounter, efforts to improve the allergy assessment, more information contributing to illness severity, and more accurate pathogen risk assessment. Utilization of ePneumonia increased from 63% during the study period to 90% over the following year with subsequent iterations. Future work includes the adaptation of ePneumonia to hospital EDs in our system, including rural and urgent care settings, exploration of CDS design that provides diagnosis support, and automating the collection of qualitative data from the interaction. Our study demonstrates the feasibility of CDS to engage physicians at the bedside, empower them to share their clinical and CDS experiences, and leverage those experiences to improve CDS design and pneumonia care across the system.

Conclusion

In a study aimed to understand reasons for rejection of best-practice recommendations for pneumonia during the implementation of a computerized CDS, we found that the majority of physicians provided reasons for rejection using unstructured text. Thematic analysis of text data revealed new reasons for rejection not previously highlighted in the literature, including alternative diagnoses to pneumonia and additional patient information used for decision-making not extracted by the tool. CDS implementation that promotes and examines physician–CDS interactions is feasible and provides insights to the implementation and adaptation process across a health care system.

Clinical Relevance Statement

During implementation of a computerized clinical decision support (CDS) tool for pneumonia, we found that the majority of physicians rejecting best-practice recommendations in practice provided reasons for rejection using unstructured text. Thematic analysis of text data revealed alternative diagnoses to pneumonia and additional patient information used for decision-making not specified in best-practice guidelines. CDS that engages physicians in a dialogue is feasible and provides insights to the implementation and adaptation of pneumonia guidelines across a learning health care system.

Multiple Choice Questions

1. Which of the following statements about pneumonia is true?
 a. There is little evidence to guide pneumonia diagnosis and management.
 b. Pneumonia diagnosis and management is very straightforward, with minimal variation.
 c. Pneumonia management demonstrates widespread variation in antibiotic selection and site-of-care decisions.
 d. Clinical decision support tools have dramatically reduced variation and improved practice outcomes for patients with pneumonia.

 Correct Answer: The correct answer is option c. While evidence-based guidelines are associated with improved outcomes, widespread variation in antibiotic selection and site-of-care decisions exist. Clinical decision support tools, are a promising way to reduce the gap between evidence and practice, but they have not been consistently shown to dramatically impact practice.

2. Which of the following statements about the results from this study is true?
 a. Physicians rejected recommendations from the CDS most of the time.
 b. Physicians who rejected recommendations from the CDS left reasons for adoptions.
 c. Physicians found the CDS difficult to use.
 d. Physicians used the CDS for all pneumonia patients.

 Correct Answer: The correct answer is option d. Clinical decision support tools have dramatically reduced variation and improved practice and outcomes for patients with pneumonia.
Correct Answer: The correct answer is option b. Physicians often agree with recommendations, but when they rejected recommendations from the CDS, they left reasons for adoptions most of the time.

Protection of Human and Animal Subjects
The study was performed in compliance with the World Medical Association Declaration of Helsinki on Ethical Principles for Medical Research Involving Human Subjects, and was reviewed and approved by the Intermountain Healthcare Institutional Review Board (IRB #1017598). Implied consent was obtained from all surveyed physicians by completion of the survey, and was approved by the IRB; waiver of consent was approved by the IRB for tool data collection.

Funding
This work was supported by Intermountain Healthcare and the Intermountain Research and Medical Foundation. The Research Electronic Data Capture (REDCap) tool is funded by a grant from the National Institutes of Health (CTSA 3UL1RR025764–02). Dr. Jones is funded by a career development award from the Veterans Affairs Health Services Research & Development (# IK2HX001908).

Conflict of Interest
None declared.

References
15. Vines C, Dean NC. Technology implementation impacting the outcomes of patients with CAP. Semin Respir Crit Care Med 2012; 33(03): 292–297
16. Kellermann AL, Jones SS. What it will take to achieve the as-yet-unfulfilled promises of health information technology. Health Aff (Millwood) 2013; 32(01): 63–68
37 Graham TA, Kushniruk AW, Bullard MJ, Holroyd BR, Meurer DP, Rowe BH. How usability of a web-based clinical decision support system has the potential to contribute to adverse medical events. AMIA Annu Symp Proc 2008;2008:257–261
40 Chow AL, Lye DC, Arah OA. Patient and physician predictors of patient receipt of therapies recommended by a computerized decision support system when initially prescribed broad-spectrum antibiotics: a cohort study. J Am Med Inform Assoc 2016;23(e1):e58–e70
46 Nisbett RE, Wilson TD. Telling more than we can know—verbal reports on mental processes. Psychol Rev 1977;84(03):231–259