J Pediatr Infect Dis 2019; 14(03): 108-115
DOI: 10.1055/s-0038-1675786
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Bacterial Profile of Middle Ear Fluid with Recurrent Acute Otitis Media Infection Using Culture Independent 16S rDNA Gene Sequencing

Geetha Nagaraj
1   Central Research Laboratory, Department of Microbiology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India
,
Anurag Girdhar
2   Department of Pediatrics, Manipal Hospital, Bengaluru, Karnataka, India
,
Jagdish Chinnappa
2   Department of Pediatrics, Manipal Hospital, Bengaluru, Karnataka, India
,
Feroze Ganaie
1   Central Research Laboratory, Department of Microbiology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India
,
Vandana Govindan
1   Central Research Laboratory, Department of Microbiology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India
,
Kadahalli Lingegowda Ravikumar
1   Central Research Laboratory, Department of Microbiology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India
› Author Affiliations
Further Information

Publication History

07 May 2018

28 September 2018

Publication Date:
11 December 2018 (online)

Abstract

Background Recurrent otitis media is one of the common infections of childhood. The causative bacterial pathogen is one of the major risk factors of recurrent infection. With limited availability of Indian data, we performed this study to identify the bacterial pathogens.

Materials and Methods Otitis media cases were diagnosed based on clinical criteria. Thirty-six middle ear fluid (MEF) samples were collected by tympanocentesis and cultured for pathogens. Seventy-eight per cent of the cases had three previous episodes of otitis media in the past 6 months; the remaining 22% had four episodes in the preceding 6 months. At the time of sample collection, all patients were on antibiotic coverage. Genomic DNA was extracted from MEF samples using Qiagen DNA mini Kit. The 16s rDNA polymerase chain reaction (PCR) and quantitative multiplex (qmPCR) for Streptococcus pneumoniae was performed on these samples. Streptococcus pneumoniae–positive samples were serotyped using PCRSeqTyping.

Results None of the 36 samples showed growth by conventional culture. The 16s rDNA PCR identified bacterial pathogens in 33 samples. Four samples gave mixed reads. The organisms identified were Neisseria spp. other than Neisseria meningitidis (n = 7), N. meningitidis (n = 8), Lactococcus spp. (n = 5), S. pneumoniae (n = 2), Pseudomonas aeruginosa (n = 2), Haemophilus influenzae (n = 1), Salmonella infantis (n = 1), Staphylococcus epidermidis (n = 1), Staphylococcus auricularis (n = 1), and Streptococcus sp. (n = 1). The qmPCR detected the presence of S. pneumoniae in six samples. PCRSeqTyping was able to identify Serotype 19A in two samples positive for S. pneumoniae.

Conclusion The study demonstrates the usefulness of 16s rDNA PCR protocol to identify the bacterial pathogens in MEF by a culture-independent method. Neisseria spp. were the predominant species identified followed by Lactococcus spp. and S. pneumoniae. Detection of pneumococci by 16s rDNA PCR correlated well with qmPCR-based detection and PCRSeqTyping.

 
  • References

  • 1 Monasta L, Ronfani L, Marchetti F. , et al. Burden of disease caused by otitis media: systematic review and global estimates. PLoS One 2012; 7 (04) e36226
  • 2 Leibovitz E, Greenberg D, Piglansky L. , et al. Recurrent acute otitis media occurring within one month from completion of antibiotic therapy: relationship to the original pathogen. Pediatr Infect Dis J 2003; 22 (03) 209-216
  • 3 Wang PC, Chang YH, Chuang LJ, Su HF, Li CY. Incidence and recurrence of acute otitis media in Taiwan's pediatric population. Clinics (São Paulo) 2011; 66 (03) 395-399
  • 4 Wasihun AG, Zemene Y. Bacterial profile and antimicrobial susceptibility patterns of otitis media in Ayder Teaching and Referral Hospital, Mekelle University, Northern Ethiopia. Springerplus 2015; 4 (04) 701
  • 5 Soriano F. Microbial etiologies of acute otitis media. Clin Microbiol Infect 1997; 3 (Suppl 3): S23 –S25
  • 6 Singh AH, Basu R, Venkatesh A. Aerobic bacteriology of chronic suppurative otitis media in Rajahmundry, Andhra Pradesh, India. Biol Med (Aligarh) 2012; 4 (02) 73-79
  • 7 De Baere T, Vaneechoutte M, Deschaght P, Huyghe J, Dhooge I. The prevalence of middle ear pathogens in the outer ear canal and the nasopharyngeal cavity of healthy young adults. Clin Microbiol Infect 2010; 16 (07) 1031-1035
  • 8 Lane DJ. . 16S/23S rDNA sequencing. In: Stackebrandt, E, Good fellow, M., eds. Nucleic Acid Techniques in Bacterial Systematics. New York, NY: John Wiley and Sons; 1991. :115–175
  • 9 Patel A, Harris KA, Fitzgerald F. What is broad-range 16S rDNA PCR?. Arch Dis Child Educ Pract Ed 2017; 102 (05) 261-264
  • 10 Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD. Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA 1998; 279 (04) 296-299
  • 11 Srinivasan R, Karaoz U, Volegova M. , et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One 2015; 10 (02) e0117617
  • 12 Böttger EC. Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 1989; 53 (01) – (02) 171-176
  • 13 Keller PM, Rampini SK, Bloemberg GV. Detection of a mixed infection in a culture-negative brain abscess by broad-spectrum bacterial 16S rRNA gene PCR. J Clin Microbiol 2010; 48 (06) 2250-2252
  • 14 Cherkaoui A, Emonet S, Ceroni D. , et al. Development and validation of a modified broad-range 16S rDNA PCR for diagnostic purposes in clinical microbiology. J Microbiol Methods 2009; 79 (02) 227-231
  • 15 Harris KA, Hartley JC. Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J Med Microbiol 2003; 52 (Pt 8): 685-691
  • 16 Chan CL, Wabnitz D, Bassiouni A, Wormald PJ, Vreugde S, Psaltis AJ. Identification of the bacterial reservoirs for the middle ear using phylogenic analysis. JAMA Otolaryngol Head Neck Surg 2017; 143 (02) 155-161
  • 17 Welinder-Olsson C, Dotevall L, Hogevik H. , et al. Comparison of broad-range bacterial PCR and culture of cerebrospinal fluid for diagnosis of community-acquired bacterial meningitis. Clin Microbiol Infect 2007; 13 (09) 879-886
  • 18 Schuurman T, de Boer RF, Kooistra-Smid AMD, van Zwet AA. Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical setting. J Clin Microbiol 2004; 42 (02) 734-740
  • 19 Draz NI, Taha SE, Shady A, Yara S, Ghany A. Comparison of broad range 16S rDNA PCR to conventional blood culture for diagnosis of sepsis in the newborn. Egypt J Med Hum Genet 2013; 14 (04) 403-411
  • 20 Moore MS, McCarroll MG, McCann CD, May L, Younes N, Jordan JA. Direct screening of blood by PCR and pyrosequencing for a 16S rRNA gene target from emergency department and intensive care unit patients being evaluated for bloodstream infection. J Clin Microbiol 2016; 54 (01) 99-105
  • 21 Bémer P, Plouzeau C, Tande D. , et al. Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study. J Clin Microbiol 2014; 52 (10) 3583-3589
  • 22 Saglani S, Harris KA, Wallis C, Hartley JC. Empyema: the use of broad range 16S rDNA PCR for pathogen detection. Arch Dis Child 2005; 90 (01) 70-73
  • 23 Böttger EC, Teske A, Kirschner P. , et al. Disseminated “Mycobacterium genavense” infection in patients with AIDS. Lancet 1992; 340 (8811): 76-80
  • 24 Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple's disease. N Engl J Med 1992; 327 (05) 293-301
  • 25 Anderson BE, Dawson JE, Jones DC, Wilson KH. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol 1991; 29 (12) 2838-2842
  • 26 Maurin M, Raoult D. Q fever. Clin Microbiol Rev 1999; 12 (04) 518-553
  • 27 Shaikh N, Hoberman A, Kaleida PH. , et al. Otoscopic signs of otitis media. Pediatr Infect Dis J 2011; 30 (10) 822-826
  • 28 Bailey WR, Scott EG, Finegold SM. , et al. Bailey & Scott's Diagnostic Microbiology. St. Louis; Mosby: 1986
  • 29 Ganaie FA, Govindan V, Ravikumar KL. Standardization and evaluation of a quantitative multiplex real-time PCR assay for the rapid identification of Streptococcus pneumoniae . Pneumonia 2015; 6: 57-66
  • 30 Frank DN, Pace NR. Molecular-phylogenetic analyses of human gastrointestinal microbiota. Curr Opin Gastroenterol 2001; 17 (01) 52-57
  • 31 Nagaraj G, Ganaie F, Govindan V, Ravikumar KL. Development of PCRSeqTyping-a novel molecular assay for typing of Streptococcus pneumoniae. . Pneumonia (Nathan) 2017; 9: 8
  • 32 Leung MH, Bryson K, Freystatter K. , et al. Sequetyping: serotyping Streptococcus pneumoniae by a single PCR sequencing strategy. J Clin Microbiol 2012; 50 (07) 2419-2427
  • 33 Vandana G, Feroze AG, Geetha N. Pan India distribution of pneumococcal serotypes (PIDOPS) causing invasive pneumococcal disease and pneumonia in children between 6 weeks and 5 years and their antimicrobial resistance – phase I. Pediatr Infect Dis 2016; 8 (02) 47-51
  • 34 Patel T, Sharma HS. Otitis media: a prospective study in central India. Int J Pharma Bio Sci 2014; 5 (04) 311-315
  • 35 Pichichero ME. Recurrent and persistent otitis media. Pediatr Infect Dis J 2000; 19 (09) 911-916
  • 36 Ramakrishnan K, Sparks RA, Berryhill WE. Diagnosis and treatment of otitis media. Am Fam Physician 2007; 76 (11) 1650-1658
  • 37 Sillanpää S, Oikarinen S, Sipilä M. , et al. Moraxella catarrhalis might be more common than expected in acute otitis media in young Finnish children. J Clin Microbiol 2016; 54 (09) 2373-2379
  • 38 Pichichero ME, Pichichero CL. Persistent acute otitis media: I. Causative pathogens. Pediatr Infect Dis J 1995; 14 (03) 178-183
  • 39 Cohen R, de la Rocque F, Boucherat M, Doit C, Bingen E, Geslin P. Treatment failure in otitis media: an analysis. J Chemother 1994; 6 (Suppl 4): 17-22 , discussion 23–24
  • 40 Hall-Stoodley L, Hu FZ, Gieseke A. , et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006; 296 (02) 202-211
  • 41 Kommedal O, Lekang K, Langeland N, Wiker HG. Characterization of polybacterial clinical samples using a set of group-specific broad-range primers targeting the 16S rRNA gene followed by DNA sequencing and RipSeq analysis. J Med Microbiol 2011; 60 (Pt 7): 927-936
  • 42 Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 1999; 96 (25) 14547-14552
  • 43 Paster BJ, Boches SK, Galvin JL. , et al. Bacterial diversity in human subgingival plaque. J Bacteriol 2001; 183 (12) 3770-3783
  • 44 Suau A, Bonnet R, Sutren M. , et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999; 65 (11) 4799-4807
  • 45 Tanner MA, Shoskes D, Shahed A, Pace NR. Prevalence of corynebacterial 16S rRNA sequences in patients with bacterial and “nonbacterial” prostatitis. J Clin Microbiol 1999; 37 (06) 1863-1870
  • 46 Wilson KH, Blitchington RB. Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 1996; 62 (07) 2273-2278
  • 47 Frank DN, Spiegelman GB, Davis W, Wagner E, Lyons E, Pace NR. Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol 2003; 41 (01) 295-303
  • 48 Butbul-Aviel Y, Miron D, Halevy R, Koren A, Sakran W. Acute mastoiditis in children: Pseudomonas aeruginosa as a leading pathogen. Int J Pediatr Otorhinolaryngol 2003; 67 (03) 277-281
  • 49 Perveen S, Naqvi SB, Fatima A. Antimicrobial susceptibility pattern of clinical isolates from cases of ear infection using amoxicillin and cefepime. Springerplus 2013; 2: 288
  • 50 Hatch SH, Jenkins PC, Scarrow DJ. Neisseria meningitidis in acute otitis media. N Z Med J 1985; 98 (791) 1020
  • 51 Choksi TT, Dadani F. Reviewing the Emergence of Lactococcus garvieae: a case of catheter associated urinary tract infection caused by Lactococcus garvieae and Escherichia coli coinfection. Case Rep Infect Dis 2017; 2017: 5921865
  • 52 Kim HS, Park DW, Youn YK. , et al. Liver abscess and empyema due to Lactococcus lactis cremoris . J Korean Med Sci 2010; 25 (11) 1669-1671
  • 53 Karaaslan A, Soysal A, Kepenekli Kadayifci E. , et al. Lactococcus lactis spp. lactis infection in infants with chronic diarrhea: two cases report and literature review in children. J Infect Dev Ctries 2016; 10 (03) 304-307
  • 54 Stroman DW, Roland PS, Dohar J, Burt W. Microbiology of normal external auditory canal. Laryngoscope 2001; 111 (11 Pt 1): 2054-2059
  • 55 Sontakke S, Cadenas MB, Maggi RG, Diniz PP, Breitschwerdt EB. Use of broad range16S rDNA PCR in clinical microbiology. J Microbiol Methods 2009; 76 (03) 217-225
  • 56 Sarookhani M-R, Ayazi P, Alizadeh S, Foroughi F, Sahmani A, Adineh M. Comparison of 16S rDNA-PCR amplification and culture of cerebrospinal fluid for diagnosis of bacterial meningitis. Iran J Pediatr 2010; 20 (04) 471-475