Semin Respir Crit Care Med 2018; 39(05): 556-565
DOI: 10.1055/s-0038-1673616
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Kidney Injury and Electrolyte Abnormalities in Liver Failure

Anthony Bonavia
1   Department of Anesthesiology and Perioperative Medicine, PennState Health, Hershey, Pennsylvania
,
Kai Singbartl
2   Department of Critical Care Medicine, Mayo Clinic, Phoenix, Arizona
› Author Affiliations
Further Information

Publication History

Publication Date:
28 November 2018 (online)

Abstract

The liver and kidney are key organs of metabolic homeostasis in the body and display complex interactions. Liver diseases often have direct and immediate effects on renal physiology and function. Conversely, acute kidney injury (AKI) is a common problem in patients with both acute and chronic liver diseases. AKI in patients with acute liver failure is usually multifactorial and involves insults similar to those seen in the general AKI population. Liver cirrhosis affects and is directly affected by aberrations in systemic and renal hemodynamics, inflammatory response, renal handling of sodium and free water excretion, and additional nonvasomotor mechanisms. Subsequent problems, for example, worsening ascites, hyponatremia, and AKI, often complicate management of patients with chronic progressive liver disease and add to their morbidity and mortality. Thus, AKI must be carefully defined and diagnosed in patients with liver disease. The kidney also plays a pivotal role in balancing acid–base disturbances resulting from advanced liver disease, making AKI in the setting of end-stage liver disease very difficult to manage clinically. While renal dysfunction in these patients often resolves following orthotopic liver transplant, dialysis may be required as a bridge to transplantation to mitigate the metabolic disarray found in these critically ill patients.

 
  • References

  • 1 Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int 2012; 81 (09) 819-825
  • 2 Perazella MA, Coca SG. Traditional urinary biomarkers in the assessment of hospital-acquired AKI. Clin J Am Soc Nephrol 2012; 7 (01) 167-174
  • 3 Belcher JM. Acute kidney injury in liver disease: role of biomarkers. Adv Chronic Kidney Dis 2015; 22 (05) 368-375
  • 4 Regner KR, Singbartl K. Kidney injury in liver disease. Crit Care Clin 2016; 32 (03) 343-355
  • 5 Bonavia A, Singbartl K. A review of the role of immune cells in acute kidney injury. Pediatr Nephrol 2017
  • 6 Tujios SR, Hynan LS, Vazquez MA. , et al; Acute Liver Failure Study Group. Risk factors and outcomes of acute kidney injury in patients with acute liver failure. Clin Gastroenterol Hepatol 2015; 13 (02) 352-359
  • 7 O'Riordan A, Brummell Z, Sizer E. , et al. Acute kidney injury in patients admitted to a liver intensive therapy unit with paracetamol-induced hepatotoxicity. Nephrol Dial Transplant 2011; 26 (11) 3501-3508
  • 8 Lee WM. Recent developments in acute liver failure. Best Pract Res Clin Gastroenterol 2012; 26 (01) 3-16
  • 9 Mazer M, Perrone J. Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol 2008; 4 (01) 2-6
  • 10 Moreau R, Jalan R, Gines P. , et al; CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013; 144 (07) 1426-1437 , 1437.e1–1437.e9
  • 11 Davenport A, Sheikh MF, Lamb E, Agarwal B, Jalan R. Acute kidney injury in acute-on-chronic liver failure: where does hepatorenal syndrome fit?. Kidney Int 2017; 92 (05) 1058-1070
  • 12 Karvellas CJ, Durand F, Nadim MK. Acute kidney injury in cirrhosis. Crit Care Clin 2015; 31 (04) 737-750
  • 13 Cholongitas E, Senzolo M, Patch D, Shaw S, O'Beirne J, Burroughs AK. Cirrhotics admitted to intensive care unit: the impact of acute renal failure on mortality. Eur J Gastroenterol Hepatol 2009; 21 (07) 744-750
  • 14 Knapp ML, Hadid O. Investigations into negative interference by jaundiced plasma in kinetic Jaffé methods for plasma creatinine determination. Ann Clin Biochem 1987; 24 (Pt 1): 85-97
  • 15 Weber JA, van Zanten AP. Interferences in current methods for measurements of creatinine. Clin Chem 1991; 37 (05) 695-700
  • 16 Scappaticci GB, Regal RE. Cockcroft-Gault revisited: new deliverance on recommendations for use in cirrhosis. World J Hepatol 2017; 9 (03) 131-138
  • 17 Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. ; Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8 (04) R204-R212
  • 18 Mehta RL, Kellum JA, Shah SV. , et al; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11 (02) R31
  • 19 Kellum JA, Lameire N. ; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care 2013; 17 (01) 204
  • 20 Angeli P, Ginès P, Wong F. , et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol 2015; 62 (04) 968-974
  • 21 Tandon P, James MT, Abraldes JG, Karvellas CJ, Ye F, Pannu N. Relevance of new definitions to incidence and prognosis of acute kidney injury in hospitalized patients with cirrhosis: a retrospective population-based cohort study. PLoS One 2016; 11 (08) e0160394
  • 22 Hsieh YC, Lee KC, Chen PH, Su CW, Hou MC, Lin HC. Acute kidney injury predicts mortality in cirrhotic patients with gastric variceal bleeding. J Gastroenterol Hepatol 2017; 32 (11) 1859-1866
  • 23 Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut 2013; 62 (01) 131-137
  • 24 Larson AM, Polson J, Fontana RJ. , et al; Acute Liver Failure Study Group. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 2005; 42 (06) 1364-1372
  • 25 Murray KF, Hadzic N, Wirth S, Bassett M, Kelly D. Drug-related hepatotoxicity and acute liver failure. J Pediatr Gastroenterol Nutr 2008; 47 (04) 395-405
  • 26 Fenves AZ, Kirkpatrick III HM, Patel VV, Sweetman L, Emmett M. Increased anion gap metabolic acidosis as a result of 5-oxoproline (pyroglutamic acid): a role for acetaminophen. Clin J Am Soc Nephrol 2006; 1 (03) 441-447
  • 27 Zand L, Muriithi A, Nelsen E. , et al. Severe anion gap metabolic acidosis from acetaminophen use secondary to 5-oxoproline (pyroglutamic acid) accumulation. Am J Med Sci 2012; 344 (06) 501-504
  • 28 Stollings JL, Wheeler AP, Rice TW. Incidence and characterization of acute kidney injury after acetaminophen overdose. J Crit Care 2016; 35: 191-194
  • 29 Iwatsuki S, Popovtzer MM, Corman JL. , et al. Recovery from “hepatorenal syndrome” after orthotopic liver transplantation. N Engl J Med 1973; 289 (22) 1155-1159
  • 30 Martin PY, Ginès P, Schrier RW. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med 1998; 339 (08) 533-541
  • 31 Castro A, Jiménez W, Clària J. , et al. Impaired responsiveness to angiotensin II in experimental cirrhosis: role of nitric oxide. Hepatology 1993; 18 (02) 367-372
  • 32 Michielsen PP, Boeckxstaens GE, Sys SU, Herman AG, Pelckmans PA. The role of increased nitric oxide in the vascular hyporeactivity to noradrenaline in long-term portal vein ligated rats. J Hepatol 1995; 23 (03) 341-347
  • 33 Ginès P, Schrier RW. Renal failure in cirrhosis. N Engl J Med 2009; 361 (13) 1279-1290
  • 34 Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodés J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988; 8 (05) 1151-1157
  • 35 Ruiz-del-Arbol L, Monescillo A, Arocena C. , et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 2005; 42 (02) 439-447
  • 36 Acevedo J, Fernández J, Prado V. , et al. Relative adrenal insufficiency in decompensated cirrhosis: relationship to short-term risk of severe sepsis, hepatorenal syndrome, and death. Hepatology 2013; 58 (05) 1757-1765
  • 37 Theocharidou E, Krag A, Bendtsen F, Møller S, Burroughs AK. Cardiac dysfunction in cirrhosis - does adrenal function play a role? A hypothesis. Liver Int 2012; 32 (09) 1327-1332
  • 38 Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005; 41 (03) 422-433
  • 39 Arroyo V, Ginès P, Gerbes AL. , et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 1996; 23 (01) 164-176
  • 40 Salerno F, Gerbes A, Ginès P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Postgrad Med J 2008; 84 (998) 662-670
  • 41 Ginès A, Escorsell A, Ginès P. , et al. Incidence, predictive factors, and prognosis of the hepatorenal syndrome in cirrhosis with ascites. Gastroenterology 1993; 105 (01) 229-236
  • 42 Seetlani NK, Memon AR, Iftikhar F, Ali A, Fazel PA. Hepatorenal syndrome in patients with cirrhosis of liver according to 2007 International Ascites Club Criteria. J Ayub Med Coll Abbottabad 2016; 28 (03) 578-581
  • 43 Hadengue A, Gadano A, Moreau R. , et al. Beneficial effects of the 2-day administration of terlipressin in patients with cirrhosis and hepatorenal syndrome. J Hepatol 1998; 29 (04) 565-570
  • 44 Nanda A, Reddy R, Safraz H, Salameh H, Singal AK. Pharmacological therapies for hepatorenal syndrome: a systematic review and meta-analysis. J Clin Gastroenterol 2018; 52 (04) 360-367
  • 45 Ghosh S, Choudhary NS, Sharma AK. , et al. Noradrenaline vs terlipressin in the treatment of type 2 hepatorenal syndrome: a randomized pilot study. Liver Int 2013; 33 (08) 1187-1193
  • 46 Alessandria C, Ottobrelli A, Debernardi-Venon W. , et al. Noradrenalin vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J Hepatol 2007; 47 (04) 499-505
  • 47 Sharma P, Kumar A, Shrama BC, Sarin SK. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am J Gastroenterol 2008; 103 (07) 1689-1697
  • 48 Singh V, Ghosh S, Singh B. , et al. Noradrenaline vs. terlipressin in the treatment of hepatorenal syndrome: a randomized study. J Hepatol 2012; 56 (06) 1293-1298
  • 49 Tavakkoli H, Yazdanpanah K, Mansourian M. Noradrenalin versus the combination of midodrine and octreotide in patients with hepatorenal syndrome: randomized clinical trial. Int J Prev Med 2012; 3 (11) 764-769
  • 50 Cavallin M, Kamath PS, Merli M. , et al; Italian Association for the Study of the Liver Study Group on Hepatorenal Syndrome. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. Hepatology 2015; 62 (02) 567-574
  • 51 Colle I, Laterre PF. Hepatorenal syndrome: the clinical impact of vasoactive therapy. Expert Rev Gastroenterol Hepatol 2018; 12 (02) 173-188
  • 52 Kalambokis GN, Baltayiannis G, Christodoulou D, Christou L. Terlipressin is superior to midodrine/octreotide for hepatorenal syndrome type 1. Eur J Gastroenterol Hepatol 2017; 29 (12) 1428-1429
  • 53 Velez JC, Nietert PJ. Therapeutic response to vasoconstrictors in hepatorenal syndrome parallels increase in mean arterial pressure: a pooled analysis of clinical trials. Am J Kidney Dis 2011; 58 (06) 928-938
  • 54 Velez JC, Kadian M, Taburyanskaya M. , et al. Hepatorenal acute kidney injury and the importance of raising mean arterial pressure. Nephron 2015; 131 (03) 191-201
  • 55 Nazar A, Pereira GH, Guevara M. , et al. Predictors of response to therapy with terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 2010; 51 (01) 219-226
  • 56 Boyer TD, Sanyal AJ, Garcia-Tsao G. , et al; Terlipressin Study Group. Predictors of response to terlipressin plus albumin in hepatorenal syndrome (HRS) type 1: relationship of serum creatinine to hemodynamics. J Hepatol 2011; 55 (02) 315-321
  • 57 Persson PB, Ehmke H, Nafz B, Kirchheim HR. Sympathetic modulation of renal autoregulation by carotid occlusion in conscious dogs. Am J Physiol 1990; 258 (2 Pt 2): F364-F370
  • 58 Salerno F, Navickis RJ, Wilkes MM. Albumin treatment regimen for type 1 hepatorenal syndrome: a dose-response meta-analysis. BMC Gastroenterol 2015; 15: 167
  • 59 Scheiner B, Lindner G, Reiberger T. , et al. Acid-base disorders in liver disease. J Hepatol 2017; 67 (05) 1062-1073
  • 60 Rowell LB, Kraning II KK, Evans TO, Kennedy JW, Blackmon JR, Kusumi F. Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J Appl Physiol 1966; 21 (06) 1773-1783
  • 61 Jeppesen JB, Mortensen C, Bendtsen F, Møller S. Lactate metabolism in chronic liver disease. Scand J Clin Lab Invest 2013; 73 (04) 293-299
  • 62 Karetzky MS, Mithoefer JC. The cause of hyperventilation and arterial hypoxia in patients with cirrhosis of the liver. Am J Med Sci 1967; 254 (06) 797-804
  • 63 Hoeper MM, Krowka MJ, Strassburg CP. Portopulmonary hypertension and hepatopulmonary syndrome. Lancet 2004; 363 (9419): 1461-1468
  • 64 Ahya SN, José Soler M, Levitsky J, Batlle D. Acid-base and potassium disorders in liver disease. Semin Nephrol 2006; 26 (06) 466-470
  • 65 Funk GC, Doberer D, Osterreicher C, Peck-Radosavljevic M, Schmid M, Schneeweiss B. Equilibrium of acidifying and alkalinizing metabolic acid-base disorders in cirrhosis. Liver Int 2005; 25 (03) 505-512
  • 66 Madias NE. Lactic acidosis. Kidney Int 1986; 29 (03) 752-774
  • 67 Zhang Z, Xu X, Chen K. Lactate clearance as a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review study protocol. BMJ Open 2014; 4 (05) e004752
  • 68 García-Compeán D, González-González JA, Lavalle-González FJ, González-Moreno EI, Maldonado-Garza HJ, Villarreal-Pérez JZ. The treatment of diabetes mellitus of patients with chronic liver disease. Ann Hepatol 2015; 14 (06) 780-788
  • 69 Kawaguchi T, Taniguchi E, Itou M, Sakata M, Sumie S, Sata M. Insulin resistance and chronic liver disease. World J Hepatol 2011; 3 (05) 99-107
  • 70 McGuire LC, Cruickshank AM, Munro PT. Alcoholic ketoacidosis. Emerg Med J 2006; 23 (06) 417-420
  • 71 Komatsuda A, Wakui H, Ohtani H. , et al. Tubulointerstitial nephritis and renal tubular acidosis of different types are rare but important complications of primary biliary cirrhosis. Nephrol Dial Transplant 2010; 25 (11) 3575-3579
  • 72 Bruno CM, Neri S, D'Angelo G, D'Amico R, Raciti C, Urso G. [Type 4 renal tubular acidosis caused by spironolactone. A case report]. Minerva Med 1997; 88 (03) 93-95
  • 73 Casey TH, Summerskill WH, Orvis AL. Body and serum potassium in liver disease. I. Relationship to hepatic function and associated factors. Gastroenterology 1965; 48: 198-207
  • 74 Casey TH, Summerskill WH, Bickford RG, Rosevear JW. Body and serum potassium in liver disease. Ii. Relationships to arterial ammonia, blood Ph, and hepatic coma. Gastroenterology 1965; 48: 208-215
  • 75 Krapf R, Beeler I, Hertner D, Hulter HN. Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med 1991; 324 (20) 1394-1401
  • 76 Baertl JM, Sancetta SM, Gabuzda GJ. Relation of acute potassium depletion to renal ammonium metabolism in patients with cirrhosis. J Clin Invest 1963; 42: 696-706
  • 77 Warren KS, Iber FL, Doelle W, Sherlock S. Effect of alterations in blood pH on distribution of ammonia from blood to cerebrospinal fluid in patients in hepatic coma. J Lab Clin Med 1960; 56: 687-694
  • 78 Read AE, Laidlaw J, Haslam RM, Sherlock S. Neuropsychiatric complications following chlorothiazide therapy in patients with hepatic cirrhosis: possible relation to hypokalaemia. Clin Sci 1959; 18: 409-423
  • 79 Bourgeois N, Devaere S, Adler M, Cremer M. [Use of diuretics in the treatment of ascites in patients with cirrhosis]. Acta Gastroenterol Belg 1990; 53 (02) 256-260
  • 80 Angeli P, Wong F, Watson H, Ginès P. ; CAPPS Investigators. Hyponatremia in cirrhosis: results of a patient population survey. Hepatology 2006; 44 (06) 1535-1542
  • 81 Kim WR, Biggins SW, Kremers WK. , et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med 2008; 359 (10) 1018-1026
  • 82 Thomas SB. Acute hypervolemic hyponatremia: a case report. Nursing 2017; 47 (10) 53-57
  • 83 Gonwa TA, Wadei HM. The challenges of providing renal replacement therapy in decompensated liver cirrhosis. Blood Purif 2012; 33 (1-3): 144-148
  • 84 Matuszkiewicz-Rowińska J, Wieliczko M, Małyszko J. Renal replacement therapy before, during, and after orthotopic liver transplantation. Ann Transplant 2013; 18: 248-255
  • 85 Andreoli MCC, Souza NKG, Ammirati AL. , et al. Predictors of renal function recovery among patients undergoing renal replacement therapy following orthotopic liver transplantation. PLoS One 2017; 12 (06) e0178229
  • 86 Hmoud B, Kuo YF, Wiesner RH, Singal AK. Outcomes of liver transplantation alone after listing for simultaneous kidney: comparison to simultaneous liver kidney transplantation. Transplantation 2015; 99 (04) 823-828
  • 87 Formica Jr RN. Simultaneous liver kidney transplantation. Curr Opin Nephrol Hypertens 2016; 25 (06) 577-582
  • 88 Angeli P, Gines P, Wong F. , et al; International Club of Ascites. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. Gut 2015; 64 (04) 531-537
  • 89 Adebayo D, Morabito V, Davenport A, Jalan R. Renal dysfunction in cirrhosis is not just a vasomotor nephropathy. Kidney Int 2015; 87 (03) 509-515
  • 90 Solà E, Ginès P. Challenges and management of liver cirrhosis: pathophysiology of renal dysfunction in cirrhosis. Dig Dis 2015; 33 (04) 534-538
  • 91 Liamis G, Filippatos TD, Liontos A, Elisaf MS. Hyponatremia in patients with liver diseases: not just a cirrhosis-induced hemodynamic compromise. Hepatol Int 2016; 10 (05) 762-772