Hamostaseologie 1996; 16(01): 28-34
DOI: 10.1055/s-0038-1656635
Übersichtsarbeiten/Review Articles
Schattauer GmbH

Heparinoids and cellular interactions in the vascular system

K. T. Preissner
1   Haemostasis Research Unit, Kerckhoff-Klinik, MPI, Bad Nauheim
› Author Affiliations
Further Information

Publication History

Publication Date:
26 June 2018 (online)

Summary

Heparin and related polysaccharides have long been used for therapautic intervention in different disease states related to thromboembolic complications. The localization and functional availability of heparin-like components in the body is mostly confined to cell surfaces and extracellular matrix/basement membranes. Their strategic position particularly in the vascular system enables heparinoids linked to various core proteins (designated as heparan sulfate proteoglycans) to interact with a variety of heparin-binding proteins such as apolipoproteins, lipases, proteases and protease inhibitors, matrix proteins as well as surface receptors on other cells and microorganisms. The variety in gene expression of respective core proteins and differences in glycosaminoglycan side chains are relevant factors for the selectivity of these interactions. Heparinoid-associated core proteins serve as co-receptors for a number of metabolic properties of vascular cells as well as for the regulation of cellular processes, particular as they relate to cell growth and differentiation in angiogenesis. Moreover, heparan sulfate proteoglycans contribute to the process of lipoprotein retention in the vessel wall and the onset of atherosclerosis. Elucidation of molecular properties, functions and their role in vascular diseases can lead to valuable information for the design of heparinoid analogues to be used for pharmacological intervention.

 
  • LITERATURE

  • 1 Jackson RL, Busch SJ, Cardin AD. Glycos-aminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 1991; 71: 481-539
  • 2 Bourin MC, Lindahl U. Glycosaminoglycans and the regulation of blood coagulation. Biochem J 1993; 289: 313-30
  • 3 Enerbäck L. The mast cell system. In: Heparin - Chemical and Biological Properties. Clinical Applications. Lane DA, Lindahl U. (eds). London: Edward Arnold; 1989: 97-114
  • 4 Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Ann Rev Biochem 1991; 60: 443-75
  • 5 Bernfield M, Kokenyesi R, Kato M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Ann Rev Cell Biol 1992; 8: 365-93
  • 6 Timpl R. Proteoglycans of basement membranes. Experimentia 1993; 49: 417-28
  • 7 Iozzo RV, Cohen IR, Grässel S. et al. The biology of perlecan: the multifaceted heparan sulfate proteoglycan of basement membranes and pericellular matrices. Biochem J 1994; 302: 625-39
  • 8 Gallagher JT, Turnbull JE, Lyon M. Heparan-sulfate proteoglycans. Biochem Soc Trans 1990; 18: 207-9
  • 9 David G. Integral membrane heparan sulfate proteoglycans. FASEB J 1993; 7: 1023-30
  • 10 Kim CW, Goldberger OA, Galla RL. et al. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 1994; 5: 797-805
  • 11 Mertens G, Cassiman JJ, Van den Berghe H. et al Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and anti-thrombin III binding properties. J Biol Chem 1992; 267: 20435-43
  • 12 Kojima T, Leone CW, Marchildon GA. et al. Isolation and characterization of heparan sulfate proteoglycans produced by cloned rat microvascular endothelial cells. J Biol Chem 1992; 267: 4859-69
  • 13 Yanagishita M, Hascall VC. Cell surface heparan sulfate proteoglycans. J Biol Chem 1992; 267: 9451-4
  • 14 Vlodavsky I, Fuks Z, Ishai-Michaeli R. et al. Extracellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis. J Cell Biochem 1991; 45: 1-10
  • 15 Cardin AD, Weintraub JR H. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989; 9: 21-31
  • 16 Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991; 64: 867-9
  • 17 Von der Mark K, von der Mark H, Goodman S. Cellular responses to extracellular matrix. Kidney Int 1992; 41: 632-40
  • 18 Battaglia C, Aumailley M, Mann K. et al. Structural basis of β1-integrin-mediated cell adhesion to a large heparan sulfate proteoglycan from basement membranes. Eur J Cell Biol 1993; 61: 92-9
  • 19 Klein G, Conzelmann S, Beck S. et al. Perlecan in human bone marrow: a growth factor-presenting, but anti-adhesive, extracellular matrix component for hematopoietic cells. Matrix Biol 1995; 141: 457-65
  • 20 Ruoslahti E. Versatile mechanisms of cell adhesion. Hervey Lect 1990; 84: 1-17
  • 21 Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25
  • 22 Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993; 120: 577-85
  • 23 Woods A, Couchman JR. Focal adhesions and cell-matrix interactions. Coll Relat Res 1988; 8: 155-82
  • 24 Woods A, Couchman JR. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell 1994; 5: 183-92
  • 25 Schaller MD, Borgman CA, Cobb BC. et al. ppl 125 FAK, a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 1992; 89: 5192-6
  • 26 Woods A, Couchman JR. Heparan sulfate proteoglycans and signalling in cell adhesion. Adv Exp Med Biol 1992; 313: 87-96
  • 27 Lindahl U, Lidholt K, Spillmann D. et al. More to »heparin« than anticoagulation. Thromb Res 1994; 75: 1-32
  • 28 Murphy-Ullrich JE, Gurusiddappa S, Frazier WA. et al. Heparin-binding peptides from thrombospondin 1 and 2 contain focal adhesion-labilizing activity. J Biol Chem 1993; 268: 26784-9
  • 29 Esko JD. Genetic analysis of proteoglycan structure, function and metabolism. Curr Opin Cell Biol 1991; 3: 805-16
  • 30 Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235: 442-7
  • 31 Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992; 15: 1835-43
  • 32 Visser MR, Vercellotti GM, McCarthy JB. et al. Herpes simplex virus inhibits endothelial cell attachment and migration to extracellular matrix proteins. Am J Pathol 1989; 134: 223-30
  • 33 Rosen SD, Bertozzi CR. The selectins and their ligands. Curr Opin Cell Biol 1994; 6: 663-73
  • 34 Lasky LA. Selectins: Interpreters of cell-specific carbohydrate information during inflammation. Science 1992; 258: 964-9
  • 35 Oppenheim JJ, Zachariae COC, Mukaida N. et al. Properties of the novel proinflammatory supergene »intercrine« cytokine family. Ann Rev Immunol 1991; 9: 617-48
  • 36 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 1994; 76: 301-14
  • 37 Sharon N, Lis H. Lectins as cell recognition molecules. Science 1989; 246: 227-34
  • 38 Liang OD, Maccarana M, Flock JI. et al. Multiple interactions between human vitronectin and Staphylococcus aureus. Bio-chim Biophys Acta 1993; 1-7
  • 39 Chhatwal GS, Blobel H. Binding of host plasma proteins to streptococci and their possible role in streptococcal pathogenicity. IRCS Med Sci 1986; 14: 1-3
  • 40 Zhang JP, Stephens RS. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 1992; 69: 861-9
  • 41 Marcum JA, Fritze L, Galli SJ. et al. Microvascular heparinlike species with anticoagulant activity. Am J Physiol 1983; 245: 725-33
  • 42 Tollefsen DM. Insight into the mechanism of action of heparin cofactor II. Thromb Hae-mostas 1995; 74: 1209-14
  • 43 Gloor S, Odink K, Guenther J. et al. A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins. Cell 1986; 47: 687-93
  • 44 Church FC, Hoffman MR. Heparin cofactor II and thrombin. Heparin-binding proteins linking hemostasis and inflammation. Trends Cardiovasc Med 1994; 4: 140-6
  • 45 Loskutoff DJ, Sawdey M, Mimuro J. Type-1 plasminogen-activator inhibitor. Prog He-mostas Thromb 1989; 9: 87-115
  • 46 Ehrlich HJ, Klein Gebbink R, Keijer J. et al. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 1990; 265: 13029-35
  • 47 Ehrlich HJ, Klein Gebbink R, Preissner KT. et al. Thrombin neutralizes plasminogen activator inhibitor 1 (PAI-1) that is complexed with vitronectin in the endothelial cell matrix. J Cell Biol 1991; 115: 1773-81
  • 48 Preissner KT. Physiological role of vessel wall related antithrombotic mechanisms: Contribution of endogenous and exogenous heparin-like components to the anticoagulant potential of the endothelium. Hae-mostasis 1990; 20: 30-49
  • 49 Zammit A, Pepper DS, Dawes J. Interaction of immobilised unfractionated and low molecular weight heparins with proteins in whole human plasma. Thromb Haemostas 1993; 70: 951-8
  • 50 Sandset PM, Abildgaard U. Extrinsic pathway inhibitor - the key to feedback control of blood-coagulation initiated by tissue thromboplastin. Haemostasis 1991; 21: 219-39
  • 51 Sivaram P, Klein MG, Goldberg IJ. Identification of a heparin-releasable lipoprotein lipase binding protein from endothelial cells. J Biol Chem 1992; 267: 16517-22
  • 52 Marcum JA, Rosenberg RD. Anticoagulant-ly active heparan sulfate proteoglycan and the vascular endothelium. Semin Thromb Haemostas 1987; 13: 464-74
  • 53 Hatton MWC, Moar SL, Richardson M. On the interaction of rabbit antithrombin III with the luminal surface of the normal and deendothelialized rabbit thoracic aorta in vitro. Blood 1986; 67: 878-86
  • 54 de Agostini AI, Watkins SC, Slayter HS. et al. Localization of anticoagulantly active heparan sulfate proteoglycans in vasular endothelium: Antithrombin binding on cultured endothelial cells and perfused rat aorta. J Cell Biol 1990; 111: 1293-304
  • 55 Esmon NL. Thrombomodulin. Prog Hemost Thromb 1989; 9: 29-55
  • 56 Parkinson JF, Koyama T, Bang NU. et al. Thrombomodulin: an anticoagulant cell surface proteoglycan with physiologically relevant glycosaminoglycan moiety. In: Heparin and Related Polysaccharides. Lane DA, Björk I, Lindahl U. (eds). New York: Plenum Press; 1992: 177-88
  • 57 Staprans I, Felts JM. Isolation and characterization of glycosaminoglycans in human plasma. J Clin Invest 1985; 76: 1984-91
  • 58 Podack ER, Müller-Eberhard HJ. Isolation of human S-protein, an inhibitor of the membrane attack complex of complement. J Biol Chem 1979; 254: 9908-14
  • 59 Ill CR, Ruoslathti E. Association of throm-bin-antithrombin III complex with vitronectin in serum. J Biol Chem 1985; 260: 15610-5
  • 60 Preissner KT, Zwicker L, Müller-Berghaus G. Formation, characterization and detection of a ternary complex between S protein, thrombin and antithrombin III in serum. Biochem J 1987; 243: 105-11
  • 61 Tomasini B, Mosher DF. Conformational states of vitronectin: Preferential expression of an antigenic epitope when vitronectin is covalently and noncovalently complexed with thrombin-antithrombin III or treated with urea. Blood 1988; 72: 903-12
  • 62 de Boer HC, de Groot PG, Bouma BN. et al. Ternary vitronectin-thrombinantithrombin III complexes in human plasma: detection and mode of association. J Biol Chem 1993; 268: 1279-83
  • 63 de Boer HC, Preissner KT, Bouma BN. et al. Binding of vitronectin-thrombinantithrom-bin III complex to human endothelial cells is mediated by the heparin binding site of vitronectin. J Biol Chem 1992; 267: 2264-8
  • 64 Preissner KT. Structure and biological role of vitronectin. Ann Rev Cell Biol 1991; 7: 275-310
  • 65 Völker W, Schön P, Vischer P. Binding and endocytosis of thrombospondin and throm-bospondin fragments in endothelial cell cultures analyzed by cuprolinic blue staining, colloidal gold labeling, and silver enhancement techniques. J Histochem Cytochem 1991; 29: 1385-94
  • 66 Rumsey SC, Obunike JC, Arad Y. et al. Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages. J Clin Invest 1992; 90: 1504-12
  • 67 Saxena U, Klein MG, Vanni TM. et al. Lipoprotein lipase increases low density lipoprotein retention by subendothelial cell matrix. J Clin Invest 1992; 89: 373-80
  • 68 Obunike JC, Edwards IJ, Rumsey SC. et al. Cellular differences in lipoprotein lipase-mediated uptake of low density lipoproteins. J Biol Chem 1994; 269: 13129-35
  • 69 Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscl Thromb Vasc Biol 1995; 15: 551-61
  • 70 Steinberg D, Parthasarathy S, Carew TE. et al. Beyond cholesterol. Modifications of low density lipoprotein that increase its athero-genicity. N Engl J Med 1989; 320: 915-24
  • 71 Thiery J, Seidel D. LDL-apheresis: Clinical experience and indications in the treatment of severe hypercholesterolemia. Transfus Sci 1993; 14: 249-59
  • 72 Rapraeger AC. The coordinated regulation of heparan sulfate, syndecans and cell behavior. Curr Opin Cell Biol 1993; 5: 844-53
  • 73 Aviezer D, Hecht D, Safran M. et al. Perle-can, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 1994; 79: 1005-13
  • 74 Yayon A, Klagsbrun M, Esko JD. et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841-8
  • 75 Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF mediated fibroblast growth and myoblast differentiation. Science 1991; 252: 1705-8
  • 76 Kan M, Wang F, Xu J. et al. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993; 259: 1918-21
  • 77 Folkman J, Klagsbrun M, Sasse J. et al. A heparin-binding angiogenic protein - basic fibroblast growth factor - is stored within basement membrane. Am J Pathol 1988; 130: 393-400
  • 78 Benezra M, Vlodavsky I, Ishai-Michaeli R. et al. Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from the subendothelial extracellular matrix. Blood 1993; 81: 3324-31
  • 79 Brunner G, Gabrilove J, Rifkin DB. et al. Phospholipase C release of basic fibroplast growth factor from human bone marrow cultures as a biologically active complex with a phosphatidylinositol-anchored heparan sulfate proteoglycan. J Cell Biol 1991; 114: 1275-83
  • 80 Schmidt A, Lemming G, Yoshida K. et al. Molecular organization and antiproliferative domains of arterial tissue heparan sulfate. Eur J Cell Biol 1992; 59: 322-8
  • 81 O'Reilly MS, Holmgren L, Shing Y. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315-28