Thromb Haemost 1997; 77(04): 610-615
DOI: 10.1055/s-0038-1656020
Clinical Studies
Schattauer GmbH Stuttgart

Compound Heterozygosity for Two Novel Missense Mutations in the Prothrombin Gene in a Patient with a Severe Bleeding Tendency

S R Poort
1   The Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
,
R Landolfi
2   Instituto di Semeiotica Medica, Facoltà di Medicina e Chirurgia “Agostino Gemelli”, Università Cattolica del Sacro Cuore, Roma, Italy
,
R M Bertina
1   The Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 12 August 1996

Accepted after resubmission 20 December 1996

Publication Date:
11 July 2018 (online)

Summary

The abnormal prothrombin gene of an Italian patient with a severe bleeding tendency and hypoprothrombinemia was selected for study and compared with the prothrombin genes of healthy controls. All the coding and their flanking regions and the 5ʹ- and 3ʹ-UT regions of the prothrombin gene were screened by analyzing the nucleotide sequence of the corresponding PCR products. The patient was found to be heterozygous for two novel point mutations: one at nucleotide 4251 in exon 6, which changes the codon for cysteine-138 (TGC) in the kringle 1 domain to that for tyrosine (TAC), and one at nucleotide 8812 in exon 10, which results in the replacement of tryptophan-357 (TGG) by cysteine (TGT) in the catalytic domain. Her mother was heterozygous for the Cys-138 Tyr mutation and her father heterozygous for the Trp-357 Cys mutation. Several other sequence variations were identified in the prothrombin genes from control individuals. Only the variations at nucleotide 4203 and 10253 could be established as polymorphisms.

 
  • References

  • 1 Jackson CM. Physiology and biochemistry of prothrombin. In: Haemostasis and Thrombosis vol 1. Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD. (eds). Edinburgh: Churchill Livingstone; 3. 1994: 397-438
  • 2 Degen SJF, MacGillivray RTA, Davie EW. Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochem 1983; 22: 2087-2097
  • 3 Degen SJF, Davie EW. Nucleotide sequence of the gene for human prothrombin. Biochem 1987; 26: 6165-6177
  • 4 Royle NJ, Irwin DM, Koschinsky ML, MacGillivray RTA, Hamerton JL. Human genes encoding prothrombin and ceruloplasmin map to 1 lpl l-ql2 and 3q21 24 respectively. Somat Cell Mol Genet 1987; 13: 285-292
  • 5 Tuddenham EGD, Cooper DN. Prothrombin. In: The molecular genetics of haemostasis and its inherited disorders. Motulsky AG, Bobrow M, Harper PS, Scriver C. (eds). Oxford, New York, Tokyo: Oxford University Press; 1994: 136-148
  • 6 Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 glu-to-lys) and the localization of a third thrombin cleavage site. Brit J Haematol 1983; 54: 245-254
  • 7 Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona Substitution of cysteine for arginine at residue 273. J Biol Chem 1986; 261: 15045-15048
  • 8 Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Madrid Substitution of arginine 273 by cysteine precludes activation. Thromb Haemost 1987; 58: 313 (abstract).
  • 9 Miyata T, Morita T, Inomoto T, Kawauchi A, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochem 1987; 26: 1117-1122
  • 10 Hedner U, Davie EW. Introduction to hemostasis and the vitamin K-dependent coagulation factors. In: The metabolic basis of inherited disease Vol 2. Scriver CR, Beaudet AL, Sly WS, Valle D. (eds). New York: McGraw-Hill; 6. 1989: 2107-2134
  • 11 Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick-I Substitution of cysteine for arginine382. Biochem 1988; 27: 9160-9165
  • 12 Henriksen RA, Mann KG. Substitution of valine for glycin-558 in the congenital dysthrombin Quick-II alters primary substrate specificity. Biochem 1989; 28: 2078-2082
  • 13 Morishita E, Saito M, Kumabushiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337 Thr and Arg-388 → His). Blood 1992; 80: 2275-2280
  • 14 Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta. Substitution of glumatic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochem 1992; 31: 7457-7462
  • 15 Degen SJF, McDowell SA, Sparks LM, Scharrer I. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of glu-466 by ala. Thromb Haemost 1995; 73: 203-209
  • 16 Tamary H, Surray S, Augustine JG, Schwartz E, Rappaport EF. Molecular characterization of hypoprothrombinemia. Blood 1991; 78: 65a
  • 17 Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Molecular and genetic analysis of a compound heterozygote for dysprothrombinemia of prothrombin Tokushima and hypoprothrombinemia. Am J Hum Genet 1992; 51: 1386-1395
  • 18 Poort SR, Michiels JJ, Reitsma PH, Bertina RM. Homozygosity for a novel missense mutation in the prothrombin gene causing a severe bleeding disorder. Thromb Haemost 1994; 72: 819-824
  • 19 Maniatis T, Fritsch EF, Sambrook J. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor; New York: 1982
  • 20 Saiki RK, Gelfland DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-491
  • 21 Sanger F, Nicklen S, Coulsen AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463-5467
  • 22 MacGillivray RTA, Irwin DM, Guinto ER, Stone JC. Recombinant genetic approaches to functional mapping of thrombin. Ann NY Acad Sci USA 1986; 485: 73-79
  • 23 Jorgensen MJ, Cantor AB, Furie BC, Furie B. Expression, isolation and characterization of biologically active 7-carboxylated recombinant human prothrombin. Circulation 1986; 74 (Suppl. 02) Abstr.1637
  • 24 Walz DA, Hewett-Emmett D, Seegers WH. Amino acid sequence of human prothrombin fragments 1 and 2. Proc Natl Acad Sci USA 1977; 74: 1969-1972
  • 25 Iwahana H, Yoshimoto K, Itakura M. Highly polymorphic region of the human prothrombin (F2) gene. Hum Genet 1992; 89: 123-124
  • 26 Iwahana H, Yoshimoto K, Itakura M. Ncol RFLP in the human prothrombin (F2) gene. Nucl Acids Res 1991; 19: 4309
  • 27 Magnesson S, Sottrup-Jensen L, Petersen TE, Claeys H. The primary structure of prothrombin, the role of vitamin K in blood coagulation and a thrombin-catalyzed “negative feedback” control mechanism for limiting the activation of prothrombin. In: Prothrombin and related coagulation factors. Hemker HC, Veltkamp JJ. (eds). Leiden University Press; 1975: 25
  • 28 Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 1985; 41: 657-663
  • 29 Gardell SJ, Duong LT, Diehl RE, York JD, Hare TR, Register RB, Jacobs JW, Dixon RAF, Friedman PA. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem 1989; 264: 17947-17952
  • 30 McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RM. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 1987; 330: 132-137
  • 31 Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S. Molecular cloning and expression of human hepato-cyte growth factor. Nature 1989; 342: 440-443
  • 32 Han SH, Stuart A, Degen SJF. Characterization of the DNF15S2 locus on human chromosome 3 identification of a gene coding for four kringle domains with homology to hepatocyte growth factor. Biochem 1991; 30: 9768-9780
  • 33 Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, Kitamura N. Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. J Biol Chem 1993; 268: 10024-10028
  • 34 Jennings CGB, Dyer SM, Burden SJ. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc Natl Acad Sci USA 1993; 90: 2895-2899
  • 35 Wilson C, Goberdhan DCI, Steller H. Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of trk-related receptor tyrosine kinases. Proc Natl Acad Sci USA 1993; 90: 7109-7113
  • 36 Stubbs MT, Bode W. A player of many parts: the spotlight falls on thrombin’s structure. Thromb Res 1993; 69: 01-58
  • 37 Tulinsky A, Park CH, Mao B, Llinas M. Lysine/fibrin binding sites of kringle modeled after the structure of kringle 1 of prothrombin. Proteins 1988; 03: 85-96
  • 38 Tulinsky A. The structure of domains of blood proteins. Thromb Haemost 1991; 66: 16-31
  • 39 Hamaguchi N, Charifson P, Darden T, Xiao L, Padmanabhan K, Tulinsky A, Hiskey R, Pedersen L. Molecular dynamics simulation of bovine prothrombin fragment 1 in the presence of calcium ions. Biochem 1992; 31: 8840-8848
  • 40 Giannelli F, Green PM, High KA, Sommer S, Poon MC, Ludwig M, Schwaab R, Reitsma PH, Goossens M, Yoshioka A, Brownlee GG. Haemophilia B: a database of point mutations and short additions and deletions – fourth edition. Nucl Acid Res 1993; 21: 3075-3087
  • 41 Green PM, Montandon AJ, Bently DR, Giannelli F. Genetics and molecular biology of haemophilia A and B. Blood Coag Fibrinol 1991; 2: 539-565
  • 42 Reitsma PH, Bernardi F, Doig RG, Gandrille S, Greengard JS, Ireland H, Krawczak M, Lind B, Long GL, Poort SR, Saito H, Sala N, Witt I, Cooper DN. Protein C deficiency: a database of mutations, 1995 update. Thromb Haemost 1995; 73: 876-889
  • 43 Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD. Identification of a thrombin sequence with growth factor activity on macrophages. Proc Natl Acad Sci USA 1986; 83: 976-980
  • 44 Loeliger EA, Lewis SM. Progress in laboratory control of oral anticoagulants. Lancet 1982; 02: 318-320
  • 45 Loeliger EA, van denBesselaar AMHP, Lewis SM. Reliability and clinical impact of the normalization of the prothrombin times in oral anticoagulant control. Thromb Haemost 1985; 53: 148-154
  • 46 Kirkwood TBL. Calibration of reference thromboplastins and standardisation of the prothrombin time ratio. Thromb Haemost 1983; 49: 238-244