Thromb Haemost 1995; 73(01): 118-121
DOI: 10.1055/s-0038-1653735
Original Article
Platelets
Schattauer GmbH Stuttgart

The Effects of KBT-3022, a New Anti-platelet Agent, on Hemorheological Properties in Guinea Pigs

Noriko Yamamoto
1   The New Drug Research Laboratories, Kanebo Ltd., Osaka, Japan
,
Koichi Yokota
1   The New Drug Research Laboratories, Kanebo Ltd., Osaka, Japan
,
Akira Yamashita
1   The New Drug Research Laboratories, Kanebo Ltd., Osaka, Japan
,
Minoru Oda
2   The Research Laboratories, TORII & CO., Ltd. Chiba, Japan
› Author Affiliations
Further Information

Publication History

Received 16 February 1994

Accepted after resubmission 24 August 1994

Publication Date:
09 July 2018 (online)

Summary

Using guinea pigs, a study was conducted on the effects of KBT-3022, a new anti-platelet agent, on hemorheological properties in various tests including blood filterability, blood viscosity, shear stress-induced red blood cell (RBC) deformability and contents of ATP and 2,3-diphosphoglycerate (2,3-DPG). Oral administration of KBT-3022 at 1 and 10 mg/kg significantly increased blood filterability, and significantly reduced blood viscosity at 10 mg/kg without changing the hematocrit, plasma fibrinogen concentration or plasma viscosity. KBT-3022 (10 mg/kg, p.o.) improved RBC deformability in response to shear stress, which was evoked by passing the blood through a thin tube. This dose of KBT-3022 also increased the contents of ATP and 2,3-DPG in RBC. These findings indicate that KBT-3022 may reduce blood viscosity as a sequel to improvement of RBC deformability through direct action on RBC. The increase in the intracellular levels of ATP and 2,3-DPG was considered to be involved in this improvement of hemorheological properties. These hemorheological effects of KBT-3022 appear to be promising for the treatment of patients with ischemic vascular disease.

 
  • References

  • 1 Lorient-Roudaut MF, Manuau JP, Bricaud H, Boisseau MR. Filterability and cerebro-vascular thrombosis. Scand J Clin Lab Invest 1981; 41 Supp. (Suppl. 156) 203-208
  • 2 Ott EO, Lechner H, Aranibar A. High blood viscosity syndrome in cerebral infarction. Stroke 1974; 5: 330-333
  • 3 Ernst E, Weihmayr T, Schmid M, Baumann M, Matrai A. Cardiovascular risk factors and hemorheology. Atherosclerosis 1986; 59: 263-269
  • 4 Dodds AJ, Boyd MJ, Allen J, Bennett ED, Flute PT, Dormandy JA. Changes in red cell deformability and other haemorrheological variables after mycardial infarction. Br Heart J 1980; 44: 508-511
  • 5 Reid HL, Dormandy JA, Barnes AJ, Lock PJ, Dormandy TL. Impaired red cell deformability peripheral vascular disease. Lancet 1976; 27: 666-669
  • 6 Müller R. Hemorheology and peripheral vascular diseases: A new therapeutic approach. J Med 1981; 12: 209-235
  • 7 Müller R. On the therapy of disturbances of blood fluidity. Angiology 1985; 36: 226-234
  • 8 Dormandy JA. Red cell deformability. Eur Neurol 1983; 22 Supp. (Suppl. 01) 23-29
  • 9 Schmid-Schonbein H. Erythrocyte rheology and the optimization of mass transport in the microcirculation. Blood Cells 1975; 1: 285-306
  • 10 Schmid-Schonbein H, Wells R, Goldstone J. Influence of deformability of human red cells upon blood viscosity. Cir Res 1969; 25: 131-143
  • 11 Chien S, Usami S, Dellenback RJ, Gregersen MI. Blood viscosity: Influence of erythrocyte deformation. Science 1967; 157: 827-829
  • 12 Ono S, Ashida S, Abiko Y. Hemorheological effect of ticlopidine in the rat. Thromb Res 1983; 31: 549-556
  • 13 Sowemimo-coker SO, Kovacs IB, Pickles H, Hedges A, Turner P. Dipyridamole increases red cell deformability. Br J Clin Pharmacol 1983; 16: 423-425
  • 14 Grasselli S, Guerciolini R, Iadevaia V, Parise P, Gresele P, Nenci GG. In vitro and ex vivo effects of indobufen on red blood cell deformability. Eur J Clin Pharmacol 1987; 32: 207-210
  • 15 Yokota K, Yamamoto N, Morimoto Y, Yamashita A, Ito K. Anti-platelet activity of KB-3022. Jpn J Pharmacol 1988; 46: 190 p
  • 16 Yamashita A, Matsuo K, Yokota K, Ito K, Nurimoto S. Anti-platelet effect and mode of action of a new anti-platelet agent KBT-3022. Eur J Pharmacol 1990; 183: 340
  • 17 Yokota K, Yamamoto N, Yamashita A, Ito K, Nurimoto S. Anti-thrombotic effect of KBT-3022 on experimental thrombosis models. Eur J Pharmacol 1990; 183: 1841
  • 18 Clauss VA. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol 1957; 17: 237-246
  • 19 Reid HL, Barnes AJ, Lock PJ, Dormandy JA, Dormandy TL. A simple method for measuring erythrocyte deformability. J Clin Pathol 1976; 29: 855-858
  • 20 Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 1964; 239: 18-30
  • 21 Ericson A, De Verdier C-H. A modified method for the determination of 2,3-diphos- phoglycerate in erythrocytes. Scand J Clin Lab Invest 1972; 29: 85-90
  • 22 Chien S. Determinants of blood viscosity and red cell deformability. Scand J Clin Lab Invest 1981; 41 Supp. (Suppl. 156) 7-12
  • 23 Dupont PA, Sirs JA. The relationship of plasma fibrinogen, erythrocyte flexibility and blood viscosity. Thromb Haemost 1977; 38: 660-667
  • 24 Schmid-Schonbein H. Macrorheology and microrheology of blood in cerebrovascular insufficiency. Eur Neurol 1983; 22 Supp. (Suppl. 01) 2-22
  • 25 Chien S, Usami S, Dellenback RJ, Gregersen MI, Nanninga LB, Guest MM. Blood viscosity: Influence of erythrocyte aggregation. Science 1967; 157: 829-831
  • 26 Weed RI, LaCelle PL, Merrill EW. Metabolic dependence of red cell deformability. J Clin Invest 1969; 48: 795-809
  • 27 Wiley JS, McCulloch KE. Calcium ions, drug action and the red cell membrpne. Pharmacol Ther 1982; 18: 271-292
  • 28 Feo C, Mohandas N. Role of ATP depletion on red cell shape and deformability. BloodCells 1977; 3: 153-161
  • 29 Fairbanks G, Patel VP, Dino JE. Biochemistry of ATP-dependent red cell membrane shape change. Scand J Clin Lab Invest 1981; 41 Supp. (Suppl. 156) 139-144
  • 30 Marcel GA. Red cell deformability: Physiological, clinical and pharmacological aspects. J Med 1979; 10: 409-416
  • 31 Rosenthal A, Mentzer WC, Eisenstein EB, Nathan DG, Nelson NM, Nadas AS. The role of red blood cell organic phosphates in adaptation to congenital heart disease. Pediatrics 1971; 47: 537-547
  • 32 Ehrly AM. The effect of pentoxifylline on the flow properties of human blood. Curr Med Res Opin 1978; 5: 608-613
  • 33 Strano A, Davi G, Avellone G, Novo S, Pinto A. Double-blind, crossover study of the clinical efficacy and the hemorheological effects of pentoxifylline in patients with occlusive arterial disease of the lower limbs. Angiology 1984; 35: 459-466
  • 34 Martin P, Vives P. The effect of pentoxifylline on red cell deformability in cerebrovascular accidents. Curr Med Res Opin 1980; 6: 518-522
  • 35 Sakai T, Okada J, Hara M, Ogashiwa M, Takeuchi K. Red cell deformability in patients with cerebral vasospasm. Int J Clin Pharmacol Ther Toxicol 1985; 23: 79-82
  • 36 Stefanovich V. Effect of pentoxifylline on energy rich phosphates in rat’s erythrocytes. Res Commun Chem Pathol Pharmacol 1975; 10: 747-750
  • 37 Stefanovich V, Porsche E, Müller E. On the influence of pentoxifylline on permeability of rat erythrocytes for methyl-O-glucose. Arzneim-forsch 1979; 29: 757-760