Journal of Pediatric Neurology 2019; 17(03): 095-104
DOI: 10.1055/s-0038-1641582
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Neonatal Microbiome and the Gut–Brain Axis: Is It the Origin of Adult Diseases?

Yssra S. Soliman
1   Albert Einstein College of Medicine, Bronx, New York, United States
,
Islam T. Elkhateb
2   Department of Obstetrics and Gynecology, Cairo University Hospital, Cairo, Egypt
,
Hany Z. Aly
3   Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, Ohio, United States
› Author Affiliations
Funding None.
Further Information

Publication History

13 December 2017

02 March 2018

Publication Date:
13 April 2018 (online)

Abstract

The gut–brain axis may contribute to the pathophysiology of a variety of neuropsychiatric diseases and chronic illnesses of adulthood. A literature search was completed using PubMed and the following keywords: “gut microbiota,” “breast milk,” “schizophrenia,” “irritable bowel syndrome,” “obesity,” “anorexia and bulimia nervosa,” and “depression.” The search was limited to articles available in English and published in the past 20 years. The human microbiota is essential to normal structure and function. The relationship of microbiota and the central nervous system is called the gut–brain axis, which may be responsible for many pathologic conditions. Research is needed to confirm this association and unveil the pathogenesis of this phenomenon.

Disclosure

No approval from the Institutional Review Board is required.


 
  • References

  • 1 Lederberg J, McCray AT. Ome SweetOmics–A genealogical treasury of words. Scientist 2001; 15 (07) 8
  • 2 Peterson J, Garges S, Giovanni M. , et al; NIH HMP Working Group. The NIH human microbiome project. Genome Res 2009; 19 (12) 2317-2323
  • 3 Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13 (10) 701-712
  • 4 Banks WA. The blood-brain barrier: connecting the gut and the brain. Regul Pept 2008; 149 (1–3): 11-14
  • 5 Ivy AC. Ivan petrovich pavlov 1849–1936. Am J Dig Dis 1936; 3 (02) 130-131
  • 6 Konturek SJ, Pepera J, Zabielski K. , et al. Brain-gut axis in pancreatic secretion and appetite control. J Physiol Pharmacol 2003; 54 (03) 293-317
  • 7 Smith GP, Gibbs J. Brain-gut peptides and the control of food intake. Adv Biochem Psychopharmacol 1981; 28: 389-395
  • 8 Smith GP, Gibbs J, Jerome C, Pi-Sunyer FX, Kissileff HR, Thornton J. The satiety effect of cholecystokinin: a progress report. Peptides 1981; 2 (Suppl. 02) 57-59
  • 9 Guarino A, Wudy A, Basile F, Ruberto E, Buccigrossi V. Composition and roles of intestinal microbiota in children. J Matern Fetal Neonatal Med 2012; 25 (01) (Suppl. 01) 63-66
  • 10 Wall R, Ross RP, Ryan CA. , et al. Role of gut microbiota in early infant development. Clin Med Pediatr 2009; 3: 45-54
  • 11 Mastromarino P, Capobianco D, Campagna G. , et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant's feces. Biometals 2014; 27 (05) 1077-1086
  • 12 Wu GD, Chen J, Hoffmann C. , et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334 (6052): 105-108
  • 13 De Filippo C, Cavalieri D, Di Paola M. , et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107 (33) 14691-14696
  • 14 Rook GA, Lowry CA, Raison CL. Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Res 2015; 1617: 47-62
  • 15 Rook GA, Lowry CA, Raison CL. Microbial ‘Old Friends’, immunoregulation and stress resilience. Evol Med Public Health 2013; 2013 (01) 46-64
  • 16 Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007; 27 (40) 10695-10702
  • 17 Veling W, Hoek HW, Selten JP, Susser E. Age at migration and future risk of psychotic disorders among immigrants in the Netherlands: a 7-year incidence study. Am J Psychiatry 2011; 168 (12) 1278-1285
  • 18 Keen DV, Reid FD, Arnone D. Autism, ethnicity and maternal immigration. Br J Psychiatry 2010; 196 (04) 274-281
  • 19 Peng H, Hagopian W. Environmental factors in the development of type 1 diabetes. Rev Endocr Metab Disord 2006; 7 (03) 149-162
  • 20 McDade TW, Hoke M, Borja JB, Adair LS, Kuzawa C. Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in the Philippines. Brain Behav Immun 2013; 31: 23-30
  • 21 McDade TW, Rutherford J, Adair L, Kuzawa CW. Early origins of inflammation: microbial exposures in infancy predict lower levels of C-reactive protein in adulthood. Proc Biol Sci 2010; 277 (1684): 1129-1137
  • 22 Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2016; 176 (01) 23-35
  • 23 van De Sande MM, van Buul VJ, Brouns FJ. Autism and nutrition: the role of the gut-brain axis. Nutr Res Rev 2014; 27 (02) 199-214
  • 24 Bashir S, Al-Ayadhi LY. Effect of camel milk on thymus and activation-regulated chemokine in autistic children: double-blind study. Pediatr Res 2014; 75 (04) 559-563
  • 25 Krajmalnik-Brown R, Lozupone C, Kang DW, Adams JB. Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. Microb Ecol Health Dis 2015; 26 (01) 26914
  • 26 Bull G, Shattock P, Whiteley P. , et al. Indolyl-3-acryloylglycine (IAG) is a putative diagnostic urinary marker for autism spectrum disorders. Med Sci Monit 2003; 9 (10) CR422-CR425
  • 27 Horvath K, Papadimitriou JC, Rabsztyn A, Drachenberg C, Tildon JT. Gastrointestinal abnormalities in children with autistic disorder. J Pediatr 1999; 135 (05) 559-563
  • 28 Aggarwal A, Bhatt M. Commonly used gastrointestinal drugs. Handb Clin Neurol 2014; 120: 633-643
  • 29 McKernan DP, Fitzgerald P, Dinan TG, Cryan JF. The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil 2010; 22 (09) 1029-1035 , e268
  • 30 Surawski RJ, Quinn DK. Metoclopramide and homicidal ideation: a case report and literature review. Psychosomatics 2011; 52 (05) 403-409
  • 31 Rao S, Srinivasjois R, Patole S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med 2009; 163 (08) 755-764
  • 32 Kraneveld AD, de Theije CG, van Heesch F. , et al. The neuro-immune axis: prospect for novel treatments for mental disorders. Basic Clin Pharmacol Toxicol 2014; 114 (01) 128-136
  • 33 Dupont HL. Review article: evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Aliment Pharmacol Ther 2014; 39 (10) 1033-1042
  • 34 Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 1999; 35 (02) 146-155
  • 35 Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 2011; 25 (03) 397-407
  • 36 Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 2012; 141 (01) 55-62
  • 37 Ruepert L, Quartero AO, de Wit NJ, van der Heijden GJ, Rubin G, Muris JW. Bulking agents, antispasmodics and antidepressants for the treatment of irritable bowel syndrome. Cochrane Database Syst Rev 2011; (08) CD003460
  • 38 Mayer EA, Tillisch K, Bradesi S. Review article: modulation of the brain-gut axis as a therapeutic approach in gastrointestinal disease. Aliment Pharmacol Ther 2006; 24 (06) 919-933
  • 39 Bercik P, Denou E, Collins J. , et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141 (02) 599-609 , 609.e1–609.e3
  • 40 Choung RS, Talley NJ. Epidemiology and clinical presentation of stress-related peptic damage and chronic peptic ulcer. Curr Mol Med 2008; 8 (04) 253-257
  • 41 Levenstein S, Ackerman S, Kiecolt-Glaser JK, Dubois A. Stress and peptic ulcer disease. JAMA 1999; 281 (01) 10-11