Methods Inf Med 1995; 34(04): 352-360
DOI: 10.1055/s-0038-1634608
Original Article
Schattauer GmbH

A Model for Medical Knowledge Representation Application to the Analysis of Descriptive Pathology Reports

J. F. Smart
1   Department of Medical Informatics, Faculty of Medicine of Marseille, France
2   Laboratory of Computer Science of Marseille, URA CNRS 1787, Faculty of Science of Luminy, France
,
M. Roux
1   Department of Medical Informatics, Faculty of Medicine of Marseille, France
› Author Affiliations
Further Information

Publication History

Publication Date:
16 February 2018 (online)

Abstract:

A new knowledge-representation system is presented, designed for medical knowledge-based applications and in particular for the analysis of descriptive medical reports. Knowledge is represented at two levels. A definitional level uses a concept-type hierarchy, a relation-type hierarchy, and a set of schematic graphs to define the concepts used and the relations between them, as well as different types of cardinality restrictions on these relations. A set of compositional hierarchies using the classic “has-part” relation as well as a new set-inclusion relation allows concept composition to be precisely defined. An assertional level allows the creation and manipulation of empirical data, in the form of graphs using the concepts, relations, and constraints defined at the definition level. The use of cardinality constraints in graph unification is considered in the context of descriptive medical discourse analysis.

 
  • References

  • 1 Ledoray V, Giusiano B, Roux M. A system for understanding medical reports: Architecture and knowledge required. In: Lun KC. et al., eds. MEDINFO 92. Amsterdam: Elsevier Science Publ; 1992: 1389-94.
  • 2 Buchanan BG, Shortliffe EG. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading MA: Addison-Wesley; 1984
  • 3 Potter B, Ronan SG. Computerized dermatopathologic diagnosis. J Am Acad Dermatol 1987; 17: 119-31.
  • 4 Kingsland LC, Lindberg DAB, Sharp GC. Anatomy of a knowledge-based consultant system: AI/RHEUM. MD Computing 1986; 3: 18-26.
  • 5 Van Ginneken A. A method for the aquisition of formalized knowledge in pathology. Meth Inform Med 1990; 29: 182-92.
  • 6 Lindberg DAB, Humphreys BL, McCray AT. The Unified Medical Language System. Meth Inform Med 1993; 32: 281-92.
  • 7 Lovis C, Baud R, Alpay L, Rassinoux AM, Scherrer JR. Needs and constraints in modelling medical knowledge using semantic networks: A medical point of view. In: Andreassen S. et al., eds. Artificial Intelligence in Medicine. Amsterdam: IOS Press; 1993: 360-70.
  • 8 Sowa J. Conceptual Structures: Information Processing in Mind and Machine. Reading, MA: Addison-Wesley Publ Comp; 1984
  • 9 Sowa J. Towards the expressive power of natural language. In: Sowa J. ed. Principles of Semantic Networks. New York: Morgan Kaufmann Publ; 1991: 57-189.
  • 10 Rassinoux A, Baud R, Scherrer JR. Conceptual graphs model extension for knowledge representation of medical texts. In: Lun KC. et al., eds. MEDINFO 92. Amsterdam: Elsevier Science Publ; 1992: 1368-74.
  • 11 Baud RH, Rassinoux AM, Scherrer JR. Natural language processing and semantical representation of medical text. Meth Inform Med 1992; 2: 117-25.
  • 12 Schroder M. Knowledge-based analysis of radiology reports using conceptual graphs. In: Pfeiffer HD. ed. Proceedings of the Seventh Annual Workshop on Conceptual Graphs. Las Cruces: New Mexico State University; 1992: 213-22.
  • 13 Alpay L, Baud R, Rassinoux AM, Wagner J, Lovis C, Scherrer JR. Interfacing Conceptual graphs and the galen master notation for medical knowledge representation and modelling. In: Andreassan S. et al., eds. Artificial Intelligence in Medicine. Amsterdam: IOS Press; 1993: 337-47.
  • 14 Chein M, Mugnier M. Conceptual Graphs: Fundamental Notions. Revue d’Intelligence Artificielle 1992; 6: 365-406.
  • 15 Brachman R, Schmolze J. An overview of the KL-ONE Knowledge Representation System. Cognitive Science 1985; 9: 171-216.
  • 16 Mac Gregor R. The evolving technology of classification-based knowledge representation systems. In: Sowa J. ed. Principles of Semantic Networks. New York: Morgan Kaufmann Publ; 1991: 385-400.
  • 17 Bernauer J, Goldberg H. Compositional classification based on conceptual graphs. In: Andreassan S. et al. eds. Artificial Intelligence in Medicine. Amsterdam: IOS Press; 1993: 337-47.
  • 18 Bouzeghoub M. Du C++ à Merise Objet. Paris: Editions Eyerolles; 1994
  • 19 Goldbert E, Pasero R, Sabatier P. Natural language interfaces: specifying and using conceptual constraints. In: Salvedny G, Smith M. eds. Human-Computer Interaction. Amsterdam: Elsevier; 1993: 385-90.
  • 20 Fargues J, Landau MC, Dugourd A, Catach L. Conceptual graphs for semantic and knowledge processing. IBM J Res Develop 1986; 30: 70-9.
  • 21 Smart JF. Knowledge Representation for Medical Text Analysis (internal report). Laboratoire d’Informatique Médicale, Faculté de Médecine La Timone (Aix-Marseille II); 1994
  • 22 Ledoray V. La Sémantique dans l’Analyse de Comptes Rendus Médico-techniques Rédigés en Français: Application a l’Anatomie Pathologie de la Thyrolde. PhD thesis. Université de Paris; 1991: 7.
  • 23 Van Dijk TA, Kintsch W. Strategies of Discourse Comprehension. New York: Academic Press; 1983
  • 24 Kahn MG. Modelling time in medical decision-support programs. Med Decision Making 1991; 11: 249-64.
  • 25 Kahn MG. The pursuit of time’s arrow: temporal reasoning in medical decision support. In: Andreassan S. et al. eds. Artificial Intelligence in Medicine. Amsterdam: IOS Press; 1993: 3-6.