Vet Comp Orthop Traumatol 1988; 01(02): 80-85
DOI: 10.1055/s-0038-1633169
Short Communication
Schattauer GmbH

Structural Adaptations to Mechanical Usage. A Proposed “Three-Way Rule” for Bone Modeling

Part II[*]
H. M. Frost
1   From the Southern Colorado Clinic, Pueblo, CO, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
22 February 2018 (online)

A collection of fundamental structural adaptations is defined for how compacta and spongiosa respond to overloading in compression, tension, and flexure, alone and in combinations. Those adaptations underlie most physiological tissue- and organ-level structural adaptations of healthy intact bones to mechanical usage. A biomechanical function called the Gamma function is then devised to predict from a structure’s net end loads and the strain history of any given small bone surface domain, whether mechanically induced formation, resorption or neither will occur in that domain. A separate function is devised to predict local rates of modeling from local strain histories. These functions correctly predict varied details of all of the fundamental adaptations and they also suggest new laws for the mechanical control of bone architecture, some of which are presented.

* Part I see this journal 1988, 1: 7–17


 
  • References

  • 1 Carter D R. Mechanical loading histories and cortical bone remodeling. Calc Tiss Int 1984; 36: S19-S24.
  • 2 Cowin S C. Wolff’s Law of trabecular architecture at remodeling equilibrium. J Biochem Eng 1986; 108: 83-8.
  • 3 Currey J D. The Mechanical Adaptations of Bones. Princeton Univ Press; Princeton: 1984
  • 4 Fyhrie D P, Carter D R. A unifying principle relating stress to trabecular bone morphology. J Orthop Res 1986; 4: 304-17.
  • 5 Lanyon L E. Functional strain as a determinant for bone modeling. Calc Tiss Int 1984; 36: S56-S61.
  • 6 Meade J B, Cowin S C, Klawitter J J, Van Buskirk W C, Skinner H R. Bone remodeling due to continuously applied loads. Calc Tiss Int 1984; 36: S25-S30.
  • 7 Pauwels F. Biomechanics of the Locomotor Apparatus. Springer-Verlag; Berlin: 1986
  • 8 Rubin C T. Skeletal strain and the functional significance of bone architecture. Calc Tissue Int 1984; 36: S11-S18.
  • 9 Tschantz P, Rutischauser E. La surcharge mecanique de l’os vivant. Annates d’ Anat et Path 1967; 12: 223-48.
  • 10 Bouvier M. Application of in vivo bone strain measurement techniques to problems of skeletal adaptations. Yearbook of Phys Anthrop 1985; 28: 237-48.
  • 11 Burr D B. Symposium on current theoretical and experimental perspectives on bone remodeling mechanisms: Introductory comments. Yearbook of Phys Anthrop 1985; 28: 207-9.
  • 12 Frost H M. Intermediary Organization of the Skeleton. CRC Press; Boca Raton: 1986
  • 13 Jaworski Z F G. Lamellar bone turnover system and its effector organ. Calc Tiss Int 1984; 36: S46-S55.
  • 14 Parfitt A M, Matthews H E, Villanueva A R, Kleerekoper M, Frame B, Rao D S. Relationship between surface, volume and thickness of iliac trabecular bone in aging and disease. J Clin Inc 1983; 72: 1396-1409.
  • 15 Putschar W G J. General pathology of the musculoskeletal system. In: Handbuch der Allgemeinen Pathologie. Buchner F, Letterer E, Roulet F. (eds). Springer-Verlag; Berlin: 1960: 361-488.
  • 16 Schnitzler C M, Solomon L. Histomorphometric analysis of a calcaneal stress fracture: A possible complication of fluoride therapy for osteoporosis. Bone 1986; 7: 193-8.
  • 17 Frost H M. Osteogenesis imperfecta. The setpoint proposal. Clin Orthop Rel Res 1987; 216: 200-17.
  • 18 Uhthoff H. Current concepts in Bone Fragility. (ed). Springer-Verlag; Berlin: 1986
  • 19 Frost H M. The regional acceleratory phenomenon. A review. Henry Ford Hosp Med J 1983; 31: 3-9.
  • 20 Frost H M. The pathomechanics of osteoporoses. Clin Orthop Rel Res 1985; 200: 198-225.
  • 21 Frost H M. A chondral modeling theory. Calc Tiss Int 1979; 28: 181-200.
  • 22 Anderson W A D, Kissane J M. Pathology. 7th ed.. C V Mosby Co; St. Louis: 1977
  • 23 Frost H M. Vital biomechanics. Proposed general concepts for skeletal adaptations to mechanical usage. Calc Tiss Int 1988; 42: 145-54.
  • 24 Jaffe H. Metabolic, Degenerative and Inflammatory Diseases of Bones and Joints. Lea and Febiger; Philadelphia: 1972
  • 25 Weinmann J P, Sicher H. Bone and Bones. 2nd Ed.. C V Mosby Co; St. Louis: 1955
  • 26 Reilly D T, Burstein A M. The mechanical properties of cortical bone. J Bone Jt Surg 1974; 56A: 1001-22.
  • 27 Jee W S S. The Skeletal tissues. In: Histology. ed 5. Weiss L. (ed). Elsevier-North Holland; New York: 1983: 200-55.
  • 28 Frost H M. Bone Modeling and Skeletal Modeling Errors. Charles C Thomas; Springfield: 1973
  • 29 Enlow D H. Principles of Bone Remodeling. Charles C Thomas; Springfield: 1963
  • 30 Frost H M. The mechanostat: A proposed pathogenetic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone and Mineral 1987; 2: 73-85.
  • 31 Johnson L C. Morphologic analysis in pathology: The kinetics of disease and general biology of bone. In: Bone Biodynamics. Frost H M. (ed). Little, Brown and Co; Boston: 1964: 543-654.
  • 32 Garn S. The Earlier Gain and Later Loss of Cortical Bone. Charles C Thomas; Springfield: 1970
  • 33 Wolff J. Das Gesetz der Transformation der Knochen. Hirschwald A; Berlin: 1892
  • 34 Evans F G. Stress and Strain in Bones. Charles C Thomas; Springfield: 1957
  • 35 Epker B N, Frost H M. Correlations of patterns of bone resorption and formation with physical behaviour of loaded bone. J Dent Res 1965; 44: 33-42.
  • 36 Frost H M. Laws of Bone Structure. Charles C Thomas; Springfield: 1964
  • 37 Cochran G, Van B. A Primer of Orthopaedic Biomechanics. Churchill-Livingstone; Edinburgh: 1982
  • 38 Epker B N, O’Ryan F. Determinants of Class II dentofacial morphology: I: A biomechanical theory. In: Effects of Surgical Intervention on Craniofacial Growth. McNamara Jr J A, Carlson D S, Ribbens K A. (eds). Univ Michigan; Ann Arbor: 1982: 169-205.
  • 39 Frost H M. Mechanical determinants of bone modeling. J Met Bone Dis Rel Res 1983; 4: 217-30.
  • 40 Currey J D. Personal communication. 1986
  • 41 Alexander R McN. Optimum strengths for bones liable to fatigue and accidental failure. J Theor Biol 1984; 109: 621-36.
  • 42 Arnold J S, Frost H M, Buss R O. The osteocyte as a bone pump. Clin Orthop 1971; 78: 47-55.
  • 43 Courpron P. Bone tissue mechanisms underlying osteoporoses. Ortho Clin N Amer 1981; 12: 513-46.
  • 44 Johnson M W. Behaviour of fluid in stressed bone and cellular stimulation. Calc Tiss Int 1984; 36: S72-S76.
  • 45 Arnold J S. Focal excessive resorption in aging and senile osteoporosis. In: Osteoporosis. Barzel U S. (ed). Grune and Stratton; New York: 1970: 80-113.
  • 46 Parfitt A M, Matthews H E, Villanueva A R, Kleerekoper M, Frame B, Rao D S. Relationship between surface, volume and thickness of iliac trabecular bone in aging and disease. J Clin Invest 1983; 72: 1396-409.
  • 47 Recker R R. Bone Histomorphometry. Techniques and Interpretation. (ed). CRC Press; Boca Raton: 1983