Vet Comp Orthop Traumatol 1997; 10(03): 153-159
DOI: 10.1055/s-0038-1632587
Original Research
Schattauer GmbH

Heat Conduction of Fixator Pins with Polymethylmethacrylate External Fixation

N. Williams
1   From the University of Missouri Veterinary Teaching Hospital, Columbia, Missouri, USA
,
J. L. Tomlinson
1   From the University of Missouri Veterinary Teaching Hospital, Columbia, Missouri, USA
,
A. W. Hahn
1   From the University of Missouri Veterinary Teaching Hospital, Columbia, Missouri, USA
,
G. M. Constantinescu
1   From the University of Missouri Veterinary Teaching Hospital, Columbia, Missouri, USA
,
Colette Wagner-Mann
1   From the University of Missouri Veterinary Teaching Hospital, Columbia, Missouri, USA
› Author Affiliations
Further Information

Publication History

Received for publication 14 November 1996

Publication Date:
10 February 2018 (online)

Summary

The purpose of this study was to determine the degree of thermal conduction along the fixation pins associated with acrylic external fixators and to develop a means of minimizing the potential for thermal injury. The data suggest that the degree of temperature conducted with 1.9 cm diameter acrylic external fixators was of minimal clinical significance if maintained a distance of one centimeter from the patient’s tissues. Larger diameter columns increase the potential for injury, however, this can be minimized with the use of a constant saline drip at the pin-acrylic interface to facilitate heat loss.

This article describes the evaluation of thermal properties of polymethylmethacrylate external skeletal fixators. The data demonstrate heat conduction along the fixation pins. Thermal injury is theoretically minimized if columns are maintained a distance of at least one centimeter from the patient’s tissue.

Research supported in part by and presented for the University of Missouri Pi Chapter of the Honor Society of Phi Zeta in coordination with SmithKline Beecham Animal Health, April 7, 1994

 
  • REFERENCES

  • 1 Achauer B, Martinez S. Burn Wound Pathophysiology and Care. Critical Care Clinics 1985; 1 1 47-58.
  • 2 Berman A, Reid J, Yanicko D, Sih G, Zimmerman M. Thermally Induced Bone Necrosis in Rabbits. Clin Orthop Rel Res 1984; 186: 284-92.
  • 3 Bonfield W, Li C. The Temperature Dependence of the Deformation of Bone. J Biomech 1968; 1: 323-9.
  • 4 Brauer G, Steinberger D, Stansbury J. Dependence of Curing Time, Peak Temperature, and Mechanical Properties on the Composition of Bone Cement. J Biomed Mater Res 1986; 20: 839-52.
  • 5 Charnley J. Acrylic Cement in Orthopedic Surgery. Williams and Wilkins Company; Baltimore: 1970
  • 6 Charnley J. Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur. J Bone Joint Surg 1960; 42 B (01) 28-30.
  • 7 Charnley J. A Biomechanical Analysis of the Use of Cement to Anchor the Femoral Head Prosthesis. J Bone Joint Surg 1965; 47 B 2 354-63.
  • 8 Core D. Hyperthermia and Cancer. Comp Cont Educ Pract Vet 1982; 4 9 719-22.
  • 9 Deyerle W, Crossland S, Sullivan H. Methylmethacrylate: Uses and Complications. AORN Journal 1979; 29 4 696-711.
  • 10 DiPisa J, Sih G, Berman A. The Temperature Problem at the Bone Acrylic Cement Interface of the Total Hip Replacement. Clin Orthop Rel Res 1976; 121: 95-8.
  • 11 Feith R. Side Effects of Acrylic Cement Implanted Into Bone. Acta Orthop Scand Supp 1975; 161: 10-30.
  • 12 Greer R. Pearson P. Biomaterials. Textbook of Small Animal Surgery. Slatter D. ed. Second edition. Philadelphia: Saunders; 1993: 105-13.
  • 13 Haas S, Brauer G, Dickson G. A Characterization of Polymethylmethacrylate Bone Cement. J Bone Joint Surg 1975; 57 A 3 380-91.
  • 14 Harisladis L, Hall E, Kraljevic U, Borek C. Hyperthermia: Biological Studies at the Cellular Level. Radiology 1975; 117: 447-52.
  • 15 Harving S, Soballe K, Bunger C. A Method for Bone Cement Interface Thermometry. Acta Orthop Scand 1991; 62 6 546-8.
  • 16 Henriques F, Moritz A. Studies of Thermal Injury: Part 1: The Conduction of Heat to and through Skin and the Temperatures Attained Therein. A Theoretical and an Experimental Investigation. Am J Path 1947; 23: 531-49.
  • 17 Jefferiss C, Lee A, Ling R. Thermal Aspects of Self Curing Polymethylmethacrylate. J Bone Joint Surg 1975; 57 B 4 511-8.
  • 18 Leinfelder K, Lemons J. Dental Polymers Clinical Restorative Materials and Techniques. Philadelphia: Lea and Febiger; 1988: 309-22.
  • 19 Lindwer J, Van de Hooff A. The Influence of Acrylic Bone Cement on the Femur of the Dog. Acta Orthop Scand 1975; 46: 657-71.
  • 20 Martinez S, Arnoczky S, Flo G, Brinker W. The Dissipation of Heat During Polymerization of Acrylics Used for External Skeletal Fixator Connecting Bars. Abstract 50, ACVS Proceedings 1995
  • 21 Matthews L, Green C, Goldstein S. The Thermal Effects of Skeletal Fixation Pin Insertion in Bone. J Bone Joint Surg 1984; 66 A 7 1077-83.
  • 22 Mercuri L. Measurement of the Heat of Reaction Transmitted Intracranially During Polymerization of Methylmethacrylate Cranial Bone Cement Used in Stabilization of the Fossa Component of an Alloplastic Temporomandibular Joint Prosthesis. Oral Surg Oral Med Oral Path 1992; 74 2 137-42.
  • 23 Meyer P, Lautenschlager E, Moore B. On the Setting Properties of Acrylic Bone Cement. J Bone Joint Surg 1973; 55 A 1 149-56.
  • 24 Moritz A, Henriques F. Studies of Thermal Injury. Part 2: The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns. Am J Path 1947; 23: 695-720.
  • 25 Munson F, Heron D. Facial Reconstruction with Acrylic Resin. Am J Surg 1941; 53 2 291-5.
  • 26 Nasisse M, Van Ee R, Munger R, Davidson M. Use of Methyl Methacrylate Orbital Prostheses in Dogs and Cats: 78 Cases (1980-1986). JAVMA 1988; 192 4 539-42.
  • 27 Ohashi T, Inoue S, Kajikawa K. External Skeletal Fixation Using Methylmethacrylate. Clin Orthop Rel Res 1983; 178: 121-9.
  • 28 Okrasinski E, Pardo A, Graehler R. Biomechanical Evaluation of Acrylic External Skeletal Fixation in Dogs and Cats. JAVMA 1991; 199 11 1590-3.
  • 29 Pope E. Burns: Thermal, Electrical, Chemical, and Cold Injuries. Textbook of Small Animal Surgery Slatter D. ed. Second edition. Philadelphia: Saunders; 1993: 355-69.
  • 30 Reckling F, Dillon W. The Bone Cement Interface Temperature During Total Joint Replacement. J Bone Joint Surg 1977; 59 A 1 80-2.
  • 31 Refojo M. Polymers in Ophthalmology. Biomaterials in Reconstructive Surgery. Rubin L. ed. St.Louis: CV Mosby Company; 1983: 955-79.
  • 32 Ridley H. Intra-ocular Acrylic Lenses: A Recent Development in the Surgery of Cataract. Brit J Ophthal 1952; 36: 113-22.
  • 33 Saha S, Pal S. Mechanical Properties of Bone Cement: A Review. J Biomed Mater Res 1984; 18: 435-62.
  • 34 Schatzker J, Home J, Sumner-Smith G, Sanderson R, Murnaghan J. Methylmethacrylate Cement: Its Curing Temperature and Effect on Articular Cartilage. Canadian J Surg 1975; 18: 172-8.
  • 35 Schultz R. Reconstruction of Facial Deformities Using Silicones and Acrylics. Biomaterials in Reconstructive Surgery. Rubin L. ed. St.Louis: CV Mosby Company; 1983: 437-73.
  • 36 Schultz R. Johnston A, Krishnamurthv S. Thermal Effects of Polymerization of Methylmethacrylate on Small Tubular Bones. International Orthop 1987; 11: 277-82.
  • 37 Tomlinson J, Constantinescu G. Acrylic External Skeletal Fixation of Fractures. Comp Cont Educ Pract Vet 1991; 13 2 235-40.
  • 38 Turner R, Atkins P, Ackley M, Park J. Molecular and Macroscopic Properties of PMMA Bone Cement: Free Radical Generation and Temperature Change Versus Mixing Ratio. J Biomed Mater Res 1981; 15: 425-32.
  • 39 Wilier R, Egger E, Histand M. Comparison of Stainless Steel Versus Acrylic for the Connecting Bar of External Skeletal Fixators. JAAHA 1991; 27: 541-8.