Nervenheilkunde 2006; 25(06): 452-458
DOI: 10.1055/s-0038-1626741
Originaler Artikel
Schattauer GmbH

Von der Neuroinflammation zur Neurodegeneration

Ein Paradigmenwechsel bei der Multiplen SkleroseFrom neuroinflammation to neurodegeneration – a change of paradigm in multiple sclerosis
J. Dörr
1   Institut für Neuroimmunologie, Charité Universitätsmedizin Berlin
2   HELIOS Klinikum Berlin Buch
,
F. Zipp
1   Institut für Neuroimmunologie, Charité Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
19 January 2018 (online)

Zusammenfassung

Während die Multiple Sklerose (MS) über mehr als 100 Jahre als Prototyp einer entzündlich-demyelinisierenden Erkrankung des Zentralnervensystems galt, wurde in den letzten Jahren deutlich, dass auch neurodegenerative Prozesse eine ganz entscheidende Rolle in der MS-Pathogenese spielen. Moderne histopathologische und bildgebende Verfahren zeigen schon frühzeitig im Krankheitsverlauf eine signifikante Schädigung neuronaler und axonaler Strukturen nicht nur in den typischen Entmarkungsherden, sondern auch in morphologisch völlig normal erscheinender weißer und grauer Substanz. Die kumulative Zerstörung neuronaler und axonaler Strukturen scheint hauptverantwortlich für die Entstehung eines permanenten neurologischen Defizits zu sein. Damit kann die MS nicht länger als isolierte Erkrankung der weißen Substanz betrachtet werden, sondern betrifft vielmehr das gesamte Zentralnervensystem. Hieraus ergibt sich zwangsläufig die Notwendigkeit, neben den etablierten immunmodulatorischen Therapieverfahren frühzeitig und konsequent eine neuroprotektive und/oder neuroregenerative Behandlung durchzuführen. Voraussetzung hierfür ist ein besseres Verständnis der neurodegenerativen Mechanismen und die Entwicklung suffizienter neuroprotektiver Therapiestrategien.

Summary

For overa century multiple sclerosis was regarded as the prototype of an inflammatory demyelinating disease of the central nervous system. During recent years however, it became increasingly evident that neurodegenerative processes also play a major role in the pathogenesis of the disease. Up-to-date histopathological and radiological techniques demonstrate early and significant destruction of both neuronal and axonal structures not only within the typical demyelinating patches but also in morphological completely normal appearing white and grey matter. These neurodegenerative processes are probably the underlying course for the development of a permanent neurological impairment. Thus, MS can no longer be regarded as an isolated white matter disease but involves the whole central nervous system. This perception calls for an early and consequent neuroprotective and/or neuroregenerative treatment in addition to the established immunomodulatory treatments. The prerequisite for such therapeutic strategies however is a better comprehension of the mechanisms underlying neurodegeneration.

 
  • Literatur

  • 1 Aktas O. et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 2004; 173: 5794-800.
  • 2 Aktas O. et al. Neuronal Damage in Autoimmune Neuroinflammation Mediated by the Death Ligand TRAIL. Neuron 2005; 46: 421-32.
  • 3 Beatty WW, Paul RH, Wilbanks SL, Hames KA, Blanco CR, Goodkin DE. Identifying multiple sclerosis patients with mild or global cognitive impairment using the Screening Examination for Cognitive Impairment (SEFCI). Neurology 1995; 45: 718-23.
  • 4 Biernacki K, Antel JP, Blain M, Narayanan S, Arnold DL, Prat A. Interferon beta promotes nerve growth factor secretion early in the course of multiple sclerosis. Arch Neurol 2005; 62: 563-8.
  • 5 Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 2001; 14: 271-8.
  • 6 Bourrie B. et al. The neuroprotective agent SR 57746A abrogates experimental autoimmune encephalomyelitis and impairs associated bloodbrain barrier disruption: implications for multiple sclerosis treatment. Proc Natl Acad Sci USA 1999; 96: 12855-9.
  • 7 Charcot M. Histologie de le sclerose en plaques. Gaz Hop 1868; 141: 554-8.
  • 8 Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med 2000; 343: 1430-8.
  • 9 De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 1998; 121: 1469-77.
  • 10 De Stefano N. et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001; 58: 65-70.
  • 11 Dörr J. et al. Tumor-necrosis-factor-related apoptosis-inducing-ligand (TRAIL)-mediated death of neurons in living human brain tissue is inhibited by flupirtine-maleate. J Neuroimmunol 2005; 167: 204-9.
  • 12 Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 2000; 47: 391-5.
  • 13 Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 2000; 123: 1845-9.
  • 14 Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997; 120: 393-9.
  • 15 Filippi M, Rovaris M, Iannucci G, Mennea S, Sormani MP, Comi G. Whole brain volume changes in patients with progressive MS treated with cladribine. Neurology 2000; 55: 1714-8.
  • 16 Filippi M, Rovaris M, Inglese M, Barkhof F, De Stefano N, Smith S, Comi G. Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet 2004; 364: 1489-96.
  • 17 Filippi M, Rovaris M, Rocca MA, Sormani MP, Wolinsky JS, Comi G. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 2001; 57: 731-3.
  • 18 Fu L. et al. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 1998; 121: 103-13.
  • 19 Giuliani F, Goodyer CG, Antel JP, Yong VW. Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol 2003; 171: 368-79.
  • 20 Griffiths I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 1998; 280: 1610-3.
  • 21 Hardmeier M. et al. Rate of brain atrophy in relapsing MS decreases during treatment with IFNbeta-1a. Neurology 2005; 64: 236-40.
  • 22 Hardmeier M. et al. Atrophy is detectable within a 3-month period in untreated patients with active relapsing remitting multiple sclerosis. Arch Neurol 2003; 60: 1736-9.
  • 23 Hein T, Hopfenmüller W. Projection of the number of multiple sclerosis patients in German]. Nervenarzt 2000; 71: 288-94.
  • 24 Hohlfeld R. et al. The role of autoimmune T lymphocytes in the pathogenesis of multiple sclerosis. Neurology 1995; 45: S33-S38.
  • 25 Inglese M, Benedetti B, Filippi M. The relation between MRI measures of inflammation and neurodegeneration in multiple sclerosis. J Neurol Sci 2005; 233: 15-9.
  • 26 Inglese M, Ge Y, Filippi M, Falini A, Grossman RI, Gonen O. Indirect evidence for early widespread gray matter involvement in relapsing-remitting multiple sclerosis. Neuroimage 2004; 21: 1825-9.
  • 27 Inglese M, Liu S, Babb JS, Mannon LJ, Grossman RI, Gonen O. Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology 2004; 63: 170-2.
  • 28 Inglese M. et al. The effect of interferon beta-1b on quantities derived from MT MRI in secondary progressive MS. Neurology 2003; 60: 853-60.
  • 29 Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 2002; 08: 532-3.
  • 30 Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 2003; 53: 174-80.
  • 31 Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T. Cortical lesions in multiple sclerosis. Brain 1999; 122: 17-26.
  • 32 Kutzelnigg A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; 128: 2705-12.
  • 33 Lenardo MJ, Chan KM, Hornung F, McFarland HF, Siegel R, Wang J, Zheng L. Mature T lymphocyte apoptosis – immune regulation ina dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999; 17: 221-53.
  • 34 Linker RA. et al. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 2002; 08: 620-4.
  • 35 Marrie RA, Fisher E, Miller DM, Lee JC, Rudick RA. Association of fatigue and brain atrophy in multiple sclerosis. J Neurol Sci 2005; 228: 161-6.
  • 36 Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992; 10: 153-87.
  • 37 Matthews PM, De Stefano N, Narayanan S, Francis GS, Wolinsky JS, Antel JP, Arnold DL. Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 1998; 18: 327-36.
  • 38 Medana I, Martinic MA, Wekerle H, Neumann H. Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 2001; 159: 809-15.
  • 39 Molyneux PD. et al. Clinical-MRI correlations in a European trial of interferon beta-1b in secondary progressive MS. Neurology 2001; 57: 2191-7.
  • 40 Nitsch R, Pohl EE, Smorodchenko A, Infante-Duarte C, Aktas O, Zipp F. Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J Neurosci 2004; 24: 2458-64.
  • 41 Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001; 50: 389-400.
  • 42 Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 1991; 41: 685-91.
  • 43 Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM, Arnold DL. Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 2000; 123: 2314-20.
  • 44 Rovaris M, Comi G, Rocca MA, Wolinsky JS, Filippi M. Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications. Brain 2001; 124: 1803-12.
  • 45 Rovaris M, Filippi M. Magnetic resonance techniques to monitor disease evolution and treatment trial outcomes in multiple sclerosis. Curr Opin Neurol 1999; 12: 337-44.
  • 46 Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 1999; 53: 1698-704.
  • 47 Sokic DV, Stojsavljevic N, Drulovic J, Dujmovic I, Mesaros S, Ercegovac M, Peric V, Dragutinovic G, Levic Z. Seizures in multiple sclerosis. Epilepsia 2001; 42: 72-9.
  • 48 Tartaglia MC, Narayanan S, Francis SJ, Santos AC, De Stefano N, Lapierre Y, Arnold DL. The relationship between diffuse axonal damage and fatigue in multiple sclerosis. Arch Neurol 2004; 61: 201-7.
  • 49 Trapp BD, Peterson J, Ransohoff RM, Rudick RA, Mörk S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278-85.
  • 50 Waxman SG. Demyelinating diseases – new pathological insights, new therapeutic targets. N Engl J Med 1998; 338: 323-5.
  • 51 Wylezinska M, Cifelli A, Jezzard P, Palace J, Alecci M, Matthews PM. Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 2003; 60: 1949-54.
  • 52 Zhang J, Medaer R, Hashim GA, Chin Y, Van den Berg-Loonen E, Raus JCM. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann Neurol 1992; 32: 330-8.
  • 53 Ziemssen T, Kumpfel T, Klinkert WE, Neuhaus O, Hohlfeld R. Glatiramer acetate-specific T-helper 1– and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 2002; 125: 2381-91.