Nuklearmedizin 2005; 44(S 01): S41-S45
DOI: 10.1055/s-0038-1625214
Original Articles
Schattauer GmbH

Dynamic and gated PET

Quantitative imaging of the heart revisitedDynamisches und getriggertes PETEine kurze Bestandsaufnahme am Beispiel Herz
S. G. Nekolla
1   Nuklearmedizinische Klinik und Poliklinik der Technischen Universität München, Germany
› Author Affiliations
Further Information

Publication History

Received: 13 July 2005

accepted: 31 August 2005

Publication Date:
11 January 2018 (online)

Summary:

This short overview focuses on the basic implementation as well as applications of cardiac PET studies acquired in dynamic and ECG triggered modes. Both acquisition modes are well suited for quantitative analysis and the advantages of such an approach are discussed. An outlook on the measurement of respiratory triggered studies and the new challenges this data presents is provided. In the context of modern PET/CT tomographs with the combination of high sensitivity and morphologic resolution, the promise of list mode acquisition is investigated. The before mentioned acquisition modes are ideal candidates for this technology which utility in a clinical setting is briefly discussed. The retrospective generation of dynamic and gated image data (and any combinations) is greatly facilitated with this approach. Finally, a novel presentation mode for the wealth of quantitative information generated by these systems is presented.

Zusammenfassung:

Diese kurze Bestandsaufnahme zeigt den grundlegenden Aufbau von zeitaufgelösten (dynamischen) und phasenaufgelösten (getriggerten) PET Aufnahmen am Beispiel von Herzstudien. Beide Techniken sind bestens für quantitative Auswertungen geeignet; die Vorteile dieses Ansatzes werden diskutiert. Die technischen Grundlagen von atemgetriggerten PET Studien werden beleuchtet – und ebenso die Probleme, die sich aus diesem neuen Verfahren ergeben. Gerade im Zusammenhang mit den neuen Generationen kombinierter PET/CT Systeme ist ein wieder belebtes Verfahren, die „list mode“ Messung, von besonderem Interesse. Es bietet auch im routineorientierten Umfeld weitgehende Möglichkeiten der retrospektiven Bilddatengeneration, die bei dynamischen und getriggerten Studien (wie auch deren Kombination) seine Stärken ausspielen kann. Abschließend wird kurz ein Ansatz präsentiert, diese Vielzahl quantitativer Daten effektiv darzustellen.

 
  • References

  • 1 Weber WA. Use of PET for Monitoring Cancer Therapy and for Predicting Outcome. J Nucl Med 2005; 46: 983-95.
  • 2 Hutchins GD, Schwaiger M, Rosenspire KC. et al. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990; 15: 1032-42.
  • 3 Vom Dahl J, Muzik O, Wolfe ER. et al. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation 1996; 93: 238-45.
  • 4 Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multipletime uptake data. Generalizations. J Cereb Blood Flow Metab 1985; 5: 584-90.
  • 5 Bax JJ, Fath-Ordoubadi F, Boersma E. et al. Accuracy of PET in predicting functional recovery after revascularisation in patients with chronic ischaemic dysfunction: head-to-head comparison between blood flow, glucose utilisation and waterperfusable tissue fraction. Eur J Nucl Med Mol Imaging 2002; 29: 721-7.
  • 6 Vitale GD, deKemp RA, Ruddy TD. et al. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin- dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001; 42: 1730-6.
  • 7 Krause BJ, Poeppel TD, Reinhardt M. et al. Myocardial perfusion/metabolism mismatch and ventricular arrhythmias in the chronic post infarction state. Nuklearmedizin 2005; 44: 69-75.
  • 8 Bengel FM, Ueberfuhr P, Schiepel N. et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001; 345: 731-8.
  • 9 Yoshida K, Endo M, Fukuda H. et al. Measurement of arterial tracer concentrations from cardiac PET images. J ComputAssist Tomogr 1995; 19: 182-7.
  • 10 Brix G, Bellemann ME, Hauser H. et al. Recovery Koeffizienten zur Quantifizierung der arteriellen Inputfunktion aus dynamischen PET-Messungen: experimentelle und theoretische Bestimmung. Nuklearmedizin 2002; 41: 184-9.
  • 11 Schindler TH, Hornig B, Buser PT. et al. Prognostic value of abnormal vasoreactivity of epicardial coronary arteries to sympathetic stimulation in patients with normal coronary angiograms. Arterioscler Thromb Vasc Biol 2003; 23: 495-501.
  • 12 Guethlin M, Kasel AM, Coppenrath K. et al. Delayed response of myocardial flow reserve to lipidlowering therapy with fluvastatin. Circulation 1999; 99: 475-81.
  • 13 Huggins GS, Pasternak RC, Alpert NM. et al. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Circulation 1998; 98: 1291-6.
  • 14 Yokoyama I, Yonekura K, Inoue Y. et al. Long-term effect of simvastatin on the improvement of impaired myocardial flow reserve in patients with familial hypercholesterolemia without gender variance. J Nucl Cardiol 2001; 8: 445-51.
  • 15 Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator. IEEE Trans Nucl Sci 1992; 39: 502-5.
  • 16 Melcher CL, Schweitzer JS, Utsu T. et al. Scintillation properties of GSO. IEEE Trans Nucl Sci 1990; 37: 161-4.
  • 17 Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 2003; 30: 1574-97.
  • 18 Hattori N, Bengel FM, Mehilli J. et al. Global and regional functional measurements with gated FDG PET in comparison with left ventriculography. Eur J Nucl Med 2001; 28: 221-9.
  • 19 Schaefer WM, Lipke CS, Nowak B. et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: comparison with cardiac MRI. J Nucl Med 2004; 45: 74-9.
  • 20 Santana CA, Shaw LJ, Garcia EV. et al. Incremental prognostic value of left ventricular function by myocardial ECG-gated FDG PET imaging in patients with ischemic cardiomyopathy. J Nucl Cardiol 2004; 11: 542-5.
  • 21 Goerres GW, Kamel E, Heidelberg TN. et al. PETCT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 2002; 29: 351-60.
  • 22 Goerres GW, Burger C, Kamel E. et al. Respiration- induced attenuation artifact at PET/CT: technical considerations. Radiology 2003; 226: 906-10.
  • 23 Boucher L, Rodrigue S, Lecomte R. et al. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 2004; 45: 214-9.
  • 24 Makela T, Clarysse P, Sipila O. et al. A review of cardiac image registration methods. IEEE Trans Med Imaging 2002; 21: 1011-21.
  • 25 Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys 2004; 31: 2738-4.
  • 26 Zeng R, Fessler JA, Balter JM. Respiratory motion estimation from slowly rotating x-ray projections: theory and simulation. Med Phys 2005; 32: 984-91.
  • 27 Nekolla SG, Moeller-Martinez A, Martinez MJ. et al. Integrating cardiac PET/CT list mode acquisition in a clinical routine environment: implementation and initial experiences. J Nucl Cardiology 2005; 12: S65.
  • 28 Nekolla SG, Souvatzoglou M, Hausleiter J. et al. Integration of function and morphology in cardiac PET/CT: a feasibility study in patients with chronic and ischemic heart disease. J Nucl Cardiol 2005; 12: S45.