Nervenheilkunde 2003; 22(03): 150-156
DOI: 10.1055/s-0038-1624387
Original- und Übersichtsarbeiten/Original and Review Articles
Schattauer GmbH

Zerebrale Korrelate des Musikhörens

Eine fMRT-Studie zur Wirkung »fröhlicher« und »trauriger« klassischer MusikCerebral correlates of music listeningAn fMRI-study on the effects of »happy« and »sad« classical music
G. Kreutz
1   Institut für Musikpädagogik (Prof. Dr. H. G. Bastian), Johann Wolfgang Goethe-Universität Frankfurt am Main
,
M. O. Russ
2   Klinik für Neurologie (Prof. Dr. H. Steinmetz), Johann Wolfgang Goethe-Universität Frankfurt am Main
,
S. Bongard
3   Institut für Psychologie, Christian Albrechts-Universität zu Kiel
,
H. Lanfermann
4   Institut für Neuroradiologie (Prof. Dr. F. E. Zanella), Johann Wolfgang Goethe-Universität Frankfurt am Main
› Author Affiliations
Further Information

Publication History

Publication Date:
15 January 2018 (online)

Zusammenfassung

Mit funktioneller Magnetresonanztomographie (fMRT) untersuchten wir die Wirkung ausgewählter klassischromantischer Instrumentalmusik auf die zerebrale Aktivität. Einer Stichprobe von n = 17 (7 weiblich) gesunden erwachsenen Versuchspersonen wurden je 10 Musikausschnitte mit »fröhlichem« und »traurigem« Ausdruck sowie rosa Rauschen jeweils für 20 Sekunden (im Wechsel mit gleichlangen, musikfreien Intervallen = Ruhebedingung) im Scanner dargeboten. Die Ausschnitte induzierten gleiche Lautstärken (gemessen in Sone). Anschließend beurteilten die Probanden den emotionalen Ausdruck derselben Ausschnitte auf Rating-Skalen. Die Ergebnisse dieser subjektiven Urteile entsprachen den intendierten Emotionskategorien. fMRT: Musik im Kontrast zum Rauschen (plus Ruhebedingung) aktiviert fokal-kortikale Areale bilateral (mit rechtshemisphärischer Betonung, Wernicke-Region und Heschlsche Querwindungen eingeschlossen) überwiegend im Gyrus temporalis superior. In den differenziellen Kontrasten zwischen den emotionalen Kategorien (»fröhlich« versus »traurig«) stellten sich bilaterale Cluster in den Temporalpolen, die als Assoziationskortex Teil des limbischen Systems sind, distinkt für die emotionale Qualität »fröhlich« dar. Der gegenläufige Kontrast »traurig« > »fröhlich« war nicht signifikant.

Summary

Functional magnet resonance imaging (fMRI) was used to investigate the effects of selected classical-romantic music on cerebral activation. We presented music excerpts representing »happy« and »sad« emotions and, in addition, pink noise to a group of healthy adult listeners (n = 17; 7 female) during fMRI scans. Each stimulus category consisted of ten excerpts. Each stimulus lasted 20 seconds, alternated with periods of silence of equal duration, and induced similar loudness levels (measured in SONE). Following fMRI, listeners also rated the emotional content of the excerpts on ten rating scales. Results from these ratings confirm the intended emotions of the music excerpts. Results from fMRI reveal significant cortical activations in superior temporal gyrus bilaterally, which included Wernicke’s region and Heschl’s gyrus, when music was contrasted with the combined noise and silence conditions. Activations were more pronounced in the right hemisphere. When »happy« was contrasted to »sad« (combined with pink noise and baseline), distinct clusters were observed in both temporal poles – the limbic association cortex. The reverse contrast »sad« greater than »happy«, however, was not significant.

 
  • Literatur

  • 1 Altenmüller E. How Many Music Centers Are in the Brain?. In: The Biological Foundations of Music. Zatorre RJ, Peretz I. (eds). New York: Annals of the New York Academy of Sciences; 2001: 273-80.
  • 2 Altenmüller E, Gruhn W, Parlitz D. Music learning produces changes in brain activation patterns: a longitudinal DC-EEG-study. International Journal of Arts Medicine 1997; 05: 28-34.
  • 3 Ayotte J, Peretz I, Rousseau I, Bard C, Bojanowski M. Patterns of music agnosia associated with middle cerebral artery infarcts. Brain 2000; 123: 1926-38.
  • 4 Ayotte J, Peretz I, Hyde K. Congenital amusia. A groups study of adults afflicted with a musicspecific disorder. Brain 2002; 125: 238-51.
  • 5 Bigand E. Contribution of music to research on human auditory cognition. In: Thinking in Sound. The Cognitive Psychology of Human Audition. McAdams S, Bigand E. (eds). New York: Oxford University Press; 1993: 199-230.
  • 6 Besson M, Schön D. Comparison between Language and Music. In: The Biological Foundations of Music. Zatorre RJ, Peretz I. (eds). New York: Annals of the New York Academy of Sciences; 2001: 232-58.
  • 7 Blood AJ, Zatorre RJ, Bermudez P, Evans AC. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience 1999; 02: 382-7.
  • 8 Blood AJ, Zatorre RJ. Intensly pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Advances of Sciences 2001; 25: 11818-23.
  • 9 Evans AC, Kamber M, Collins DL, MacDonald D. A MRI-based probabilistic atlas of neuroanatomy. In: Magnetic Resonance Scanning and Epilepsy, NATO ASI Series A, Life Sciences. Vol 264. Shorvon S, Fish D, Andermann F, Bydder GM, Stefan H. (eds). New York: Plenum Press; 1994: 263-74.
  • 10 Friston KJ, Holmes AP, Worsley KP, Polin JB, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 1995; 02: 189-210.
  • 11 Gaver WW, Mandler G. Play it again Sam: On Liking Music. Cognition and Emotion 1987; 01: 259-82.
  • 12 Genovese CR, Lazar NA, Nichols TE. Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. Neuroimage 2002; 15: 772-86.
  • 13 Griffiths TD. The Neural Processing of Complex Sounds. In: The Biological Foundations of Music. Zatorre RJ, Peretz I (eds). New York: Annals of the New York Academy of Sciences; 2001: 133-42.
  • 14 Holmes AP, Friston KJ. Generalisibility, random effects and population inference. Neuroimage 1998; 07: S754.
  • 15 Juslin PN. Emotional communication in music performance: A functionalist perspective and some data. Music Perception 1997; 14: 383-418.
  • 16 Juslin PN. Communication of emotion in music performance: Relating performance to perception. Journal of Experimental Psychology: Human Perception and Performance 2000; 26: 1797-813.
  • 17 Koelsch S, Gunter T, Friederici AD, Cramon DY v, Zysset S. et al. Bach speaks: a cortical language-network serves the processing of music. submitted.
  • 18 Koelsch S, Gunter T, Friederici A, Schröger E. Brain Indices of Music Processing. »Nonmusicians« are Musical. J Cogn Neurosci 2000; 12: 520-41.
  • 19 Kreutz G, Bongard S, von Jussis J, Hodapp V. Cardiovascular effects of music listening in musicians and nonmusicians. In: Proceedings of the 7th International Conference on Music Perception and Cognition. Stevens C, Burnham D, McPherson G, Schubert E, Renwick J. (eds). Sydney. 2002.
  • 20 Krumhansl CL. Cognitive foundation of musical pitch. Oxford: Oxford University Press; 1990.
  • 21 Kupfermann I. Localization of higher cognitive and affective functions: the association cortices. In: Principles of neural science. 3rd. ed. Kandel ER, Schwartz JH, Jessel TM. (eds.). London: Prentice-Hall International; 825.
  • 22 Liégeois-Chauvel C, Peretz I, Babai M, Laguitton V, Chauvel P. Contribution of different cortical areas in the temporal lobes to music processing. Brain 1998; 121: 1853-67.
  • 23 Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M. Increased auditory cortical representation in musicians. Nature 1998; 392: 811-4.
  • 24 Pantev C, Engelien A, Candia V, Elbert T. Representational Cortex in Musicians. Plastic Alterations in Response to Musical Practice. In: The Biological Foundations of Music. Zatorre RJ, Peretz I. (eds). New York: Annals of the New York Academy of Sciences; 2001: 281-99.
  • 25 Penhune VB, Zatorre RJ, Feindel WH. The role of auditory cortex in retention of rhythmic patterns as studied in patients with temporal lobe removals including Heschl’s gyrus. Neuropsychologia 1999; 37: 204-20.
  • 26 Peretz I. Auditory agnosia: a functional analysis. In: Thinking in Sound. The Cognitive Psychology of Human Audition. McAdams S, Bigand E. (eds). New York: Oxford University Press; 1993: 199-230.
  • 27 Peretz I. Brain Specialization for Music: New Evidence from Congenital Amusia. In: The Biological Foundations of Music. Zatorre RJ, Peretz I. (eds). New York: Annals of the New York Academy of Sciences; 2001: 153-65.
  • 28 Peretz I, Morais J. Music and Modularity. Contemporary Music Review 1989; 04: 277-91.
  • 29 Peretz I, Ayotte J, Zatorre RJ, Mehler J, Ahad P, Penhune VB, Jutras B. Congenital Amusia. A Disorder of Fine-Grained Pitch Discrimination. Neuron 2002; 33: 185-201.
  • 30 Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RSJ, Lechevalier B, Eustache F. The structural components of music perception. A functional anatomical study. Brain 1997; 120: 229-43.
  • 31 Rauschecker JP. Cortical Plasticity and Music. In: The Biological Foundations of Music. Zatorre RJ, Peretz I. (eds). New York: Annals of the New York Academy of Sciences; 2001: 330-6.
  • 32 Schlaug G. The Brain of Musicians. A Model for Functional and Structural Adaptation. In: The Biological Foundations of Music. Zatorre RJ, Peretz I. (eds). New York: Annals of the New York Academy of Sciences; 2001: 281-99.
  • 33 Sloboda JA, Juslin PN. Psychological Perspectives on Music and Emotion. In: Music and Emotion. Theory and Research. Juslin PN, Sloboda JA. (eds). Oxford: Oxford University Press; 2001: 105-34.
  • 34 Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Verlag; 1988.
  • 35 Terwogt M M, Van Grinsven F. Musical Expression of Moodstates. Psychology of Music 1991; 19: 99-109.
  • 36 Zatorre RJ. Neural Specializations for Tonal Processing. In: The Biological Foundations of Music. Zatorre RJ, Peretz I. (eds). New York: Annals of the New York Academy of Sciences; 2001: 193-210.
  • 37 Zatorre RJ, Binder JR. Functional and Structural Imaging of the Human Auditory System. In: Brain Mapping. Toga AW, Mazziotta JC. (eds). New York: Academic Press; 2000: 365-402.
  • 38 Zatorre RJ, Peretz I. (eds). The Biological Foundations of Music. New York: Annals of the New York Academy of Sciences; 2001.
  • 39 Zatorre RJ, Belin P, Penhune VB. Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences 2002; 06: 37-46.
  • 40 Zwicker E. Psychoakustik. Berlin: Springer; 1982.