Tierarztl Prax Ausg G Grosstiere Nutztiere 2010; 38(06): 357-362
DOI: 10.1055/s-0038-1624004
Original Article
Schattauer GmbH

Immunohistochemistry and polymerase chain reaction for detection of Mycoplasma hyopneumoniae infection in piglets

Vergleich von Immunhistochemie und Polymerasekettenreaktion zum Nachweis von M. -hyopneumoniae-Infektionen bei jungen Ferkeln
L. Moorkamp
1   Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation
,
E. grosse Beilage
1   Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation
,
M. Hewicker-Trautwein
2   Institute for Pathology, University of Veterinary Medicine Hannover, Foundation
› Author Affiliations
Further Information

Publication History

Received: 25 July 2010

Accepted after revision: 30 September 2010

Publication Date:
06 January 2018 (online)

Summary:

Objective: Few studies exist that concentrate on the detection of M. hyopneumoniae by PCR in piglets. Most of these studies do not permit the differentiation of latent infections from infections with typical pathomorphological lesions. The aim of the study was to characterize the occurrence of M. hyopneumoniae infections in piglets by combining and evaluating the results of macroscopical, histological, molecularbiological and immunohistochemical examinations. The evaluation of the suitability of the immunohistochemistry (IHC) as an alternative or as a supplement to other tests was a further aim. The study-design does not allow any conclusions regarding the prevalence of early M. hyo - pneumoniae-infections in piglets. Material and methods: 96 clinically affected piglets from eight pre-selected herds with an increased risk for M. hyopneumoniae infection were chosen for necropsy. Macroscopical and histological examinations of the lungs were performed. BALF and lung tissue were taken for the detection of M. hyopneumoniae by nested PCR (nPCR) and IHC. Results: 16 of 33 nPCR-positive piglets were positive for antigen by IHC while 63 nPCR-negative piglets were also negative for antigen by IHC (kappa index = 0.55). Of the 17 piglets with a nPCR-positive but IHC-negative test result, 12 originated from one herd leading to the assumption that not all field strains were detectable with the monoclonal antibody utilized. Fisher’s exact test showed a significant association (p < 0.0001) between detection of M. hyopneumoniae by nPCR in BALF or by IHC in lung tissue and the occurrence of typical pathological lesions. Conclusion: IHC with the monoclonal antibody used in this study is a suitable additional method but no alternative to the direct detection of M. hyopneumoniae by nPCR. Clinical relevance: In the case of the detection of M. hyopneumoniae in BALF by nPCR, typical pathological lesions can be expected with a higher probability than in nPCR-negative piglets.

Zusammenfassung:

Gegenstand und Ziel: Die meisten der wenigen Studien zum Nachweis von M.-hyo pneumoniae-(M.-hyo.-)Infektionen mittels PCR bei jungen Ferkeln erlauben keine Unterscheidung zwischen latenten Infektionen und solchen mit typischen pathomorphologischen Veränderungen. Die Studie bewertet das Vorkommen von M.-hyo.-Infektionen bei Ferkeln anhand der Auswertung von makroskopischen, histologischen, molekularbiologischen und immunhistochemischen Be funden. Die Beurteilung der Eignung einer Immunhistochemie (IHC) als Alternative oder Ergänzung zu anderen Tests war ein weiteres Ziel. Das Studiendesign lässt keine Rückschlüsse auf die Prävalenz von M.-hyo.-Infektionen bei jungen Ferkeln zu. Material und Methoden: 96 erkrankte Ferkel aus acht präselektierten Herden mit erhöhtem Risiko für M.-hyo.- Infektionen wurden zur Sektion ausgewählt. Die Lungen wurden makroskopisch und histologisch untersucht. Ferner erfolgte eine Untersuchung von bronchoalveolärer Lavageflüssigkeit (BALF) und Lungengewebe mittels nested PCR (nPCR) und IHC zum Nachweis von M. hyo. Ergebnisse: Bei 16 der 33 nPCR-positiven Ferkel ließ sich immun - histochemisch Antigen nachweisen, während bei 63 nPCR-negativen Ferkeln auch die IHC negativ verlief (Kappa-Index = 0,55). Von den 17 nPCR-positiven, aber IHC-negativen Ferkeln stammten 12 Tiere aus derselben Herde. Dies führte zu der Annahme, dass nicht alle Feldstämme mit dem verwendeten monoklonalen Antikörper nachweisbar waren. Der Fisher‘s Exakt-Test zeigte einen signifikanten Zusammenhang (p < 0,0001) zwischen dem Nachweis von M. hyo. mittels nPCR in BALF oder mittels IHC in Lungengewebe und dem Vorkommen von typischen pathologischen Veränderungen. Schlussfolgerung: Die IHC mit dem in dieser Studie eingesetzten monoklonalen Antikörper ist ein geeignetes ergänzendes Untersuchungsverfahren, aber keine Alternative zu dem direkten Nachweis von M. hyo. mittels nPCR. Klinische Relevanz: Bei Ferkeln mit Nachweis von M. hyo. in BALF mittels nPCR können typische pathologische Veränderungen mit einer höheren Wahrscheinlichkeit erwartet werden als bei Ferkeln mit negativem nPCR-Befund.

 
  • References

  • 1 Artiushin S, Minion F. Arbitrarily primed PCR analysis of Mycoplasma hyo - pneumoniae field isolates demonstrates genetic heterogeneity. Int J Syst Bacteriol 1996; 46: 324-328.
  • 2 Assuncao P, Fe CL, Ramirez AS, Llamazares OG, Poveda JB. Protein and antigenetic variability among Mycoplasma hyopneumoniae strains by SDS-PAGE and immunoblot. Vet Res Commun 2005; 29: 563-574.
  • 3 Buddle JR, O’Hara AJ. Enzootic pneumonia of pigs – a diagnostic dilemma. Aust Vet J 2005; 83: 134-139.
  • 4 Calsamiglia M, Collins JE, Pijoan C. Correlation between the presence of enzootic pneumonia lesions and detection of Mycoplasma hyopneumoniae in bronchial swabs by PCR. Vet Microbiol 2000; 76: 299-303.
  • 5 Calsamiglia M, Pijoan C. Colonisation state and colostral immunity to Mycoplasma hyopneumoniae of different party sows. Vet Rec 2000; 146: 530-532.
  • 6 Calus D, Baele M, Meyns T, De Kruif A, Butaye P, Decostere A, Haesebrouck F, Maes D. Protein variability among Mycoplasma hyopneumoniae isolates. Vet Microbiol 2006; 120: 284-291.
  • 7 Cheikh Saad Bouh K, Shareck F, Dea S. Monoclonal antibodies to Escherichia coli-expressed P46 and P65 membranous proteins for specific immunodetection of Mycoplasma hyopneumoniae in lungs of infected pigs. Clin Diagn Lab Immunol 2003; 10: 459-468.
  • 8 Done SH. Porcine respiratory disease complex (PRDC). Pig J 2002; 50: 174-196.
  • 9 Frey J, Haldimann A, Nicolet J. Chromosomal heterogeneity of various Mycoplasma hyopneumoniae field strains. Int J Syst Bacteriol 1992; 42: 275-280.
  • 10 Hafner S, Latimer K. Cilia-associated respiratory bacillus infection and pneumonia in a pig. J Vet Diagn Invest 1998; 10: 373-375.
  • 11 Kokotovic B, Friis NF, Jensen JS, Ahrens P. Amplified-fragment length polymorphism fingerprinting of mycoplasma species. J Clin Microbiol 1999; 37: 3300-3307.
  • 12 Kurth KT, Hsu T, Snook ER, Thacker EL, Thacker BJ, Minion FC. Use of a Mycoplasma hyopneumoniae nested polymerase chain reaction test to determine optimal sampling sites in swine. J Vet Diagn Invest 2002; 14: 463-469.
  • 13 Kwon D, Choi C, Chae C. Chronologic localization of Mycoplasma hyopneumoniae in experimentally infected pigs. Vet Pathol 2002; 39: 584-587.
  • 14 Landis RJ, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-174.
  • 15 Maes D, Segales J, Meyns T, Sibila M, Pieters M, Haesebrouck F. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol 2008; 126: 297-309.
  • 16 Marois C, Le Carrou J, Kobisch M, Gautier-Bouchardon AV. Isolation of Mycoplasma hyopneumoniae from different sampling sites in experimentally infected and contact SPF piglets. Vet Microbiol 2007; 120: 96-104.
  • 17 Mayor D, Zeeh F, Frey J, Kuhnert P. Diversity of Mycoplasma hyopneumoniae in pig farms revealed by molecular typing of clinical material. Vet Res 2007; 38: 391-398.
  • 18 Moorkamp L, Nathues H, Spergser J, Tegeler R, Grosse Beilage E. Detection of respiratory pathogens in porcine lung tissue and lavage fluid. Vet J 2007; 175: 273-275.
  • 19 Moorkamp L, Hewicker-Trautwein M, Grosse Beilage E. Occurrence of Mycoplasma hyopneumoniae in coughing piglets (3–6 weeks of age) from 50 herds with a history of endemic respiratory disease. Transbound Emerg Dis 2009; 56: 54-56.
  • 20 Nietfeld JC, Franklin CL, Riley LK, Zeman DH, Groff BT. Colonization of the tracheal epithelium of pigs by filamentous bacteria resembling cilia-associated respiratory bacillus. J Vet Diagn Invest 1995; 7: 338-342.
  • 21 Opriessnig T, Thacker EL, Yu S, Fenaux M, Meng XJ, Halbur PG. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet Pathol 2004; 41: 624-640.
  • 22 Otagiri Y, Asai T, Okada M, Uto T, Yazawa S, Hirai H, Shibata I, Sato S. Detection of Mycoplasma hyopneumoniae in lung and nasal swab samples from pigs by nested PCR and culture methods. J Vet Med Sci 2005; 67: 801-805.
  • 23 Palzer A, Ritzmann M, Wolf G, Heinritzi K. Erregernachweis aus bronchoalveolärer Lavage bei Schweinen mit Atemwegserkrankungen. Tierärztl Umsch 2005; 60: 550-556.
  • 24 Ruiz A, Utrera V, Pijoan C. Effect of Mycoplasma hyopneumoniae sow vaccination on piglet colonization at weaning. Swine Health Prod 2003; 11: 131-135.
  • 25 Sachs L. Angewandte Statistik: Anwendung statistischer Methoden. Heidelberg: Springer; 2004
  • 26 Scarman AL, Chin JC, Eamens J, Delaney SF, Djordjevic SP. Identification of novel species-specific antigens of Mycoplasma hyopneumoniae by preparative SDS-PAGE ELISA profiling. Microbiol 1997; 143: 663-673.
  • 27 Sibila M, Calsamiglia M, Vidal D, Badiella L, Aldaz A, Jensen JC. Dynamics of Mycoplasma hyopneumoniae infection in 12 farms with different production systems. Can J Vet Res 2004; 68: 12-18.
  • 28 Sibila M, Calsamiglia M, Segales J, Rosell C. Association between Mycoplasma hyopneumoniae at different respiratory sites and presence of histopathological lung lesions. Vet Rec 2004; 155: 57-58.
  • 29 Sibila M, Nofrarias M, Lopez-Soria S, Segales J, Riera P, Llopart D, Calsamiglia M. Exploratory field study on Mycoplasma hyopneumoniae infection in suckling pigs. Vet Microbiol 2007; 121: 352-356.
  • 30 Stakenborg T, Vicca J, Butaya P, Maes D, Peeters J, De Kruif A, Haesebrouck F. The diversity of Mycoplasma hyopneumoniae within and between herds using pulsed-field gel electrophoresis. Vet Microbiol 2005; 109: 29-36.
  • 31 Stakenborg T, Vicca J, Maes D, Peeters J, De Kruif A, Haesebrouck F, Butaye P. Comparison of molecular techniques for the typing of Mycoplasma hyopneumoniae isolates. J Microbiol Methods 2006; 66: 263-275.
  • 32 Vasconcelos AT, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO. et al. Swine and poultry pathogens: the complete genome sequence of two strains of Mycoplasma hyo pneumoniae and a strain of Mycoplasma synoviae . J Bacteriol 2005; 187: 5568-5577.
  • 33 Vicca J, Maes D, Thermote L, Peeters J, Haesebrouck F, De Kruif A. Patterns of Mycoplasma hyopneumoniae infections in Belgian farrow-to-finish pig herds with diverging disease-course. J Vet Med B Infect Dis Vet Public Health 2002; 49: 349-353.
  • 34 Wise KS, Kim MF. Major membrane surface proteins of Mycoplasma hyo - pneumoniae selectively modified by covalently bound lipid. J Bacteriol 1987; 169: 5546-5555.
  • 35 Zhang Q, Young TF, Ross RF. Identification and characterization of a Mycoplasma hyopneumoniae adhesin. Infect Immun 1995; 63: 1013-1019.