Semin Liver Dis 2018; 38(01): 051-059
DOI: 10.1055/s-0037-1621710
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Fibrolamellar Carcinoma: Recent Advances and Unresolved Questions on the Molecular Mechanisms

Gadi Lalazar
1   The Laboratory for Cellular Biophysics, The Rockefeller University, New York, New York
,
Sanford M. Simon
1   The Laboratory for Cellular Biophysics, The Rockefeller University, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
22 February 2018 (online)

Abstract

Fibrolamellar hepatocellular carcinoma (FLC) is a rare form of primary liver cancer that affects adolescents and young adults without underlying liver disease. Surgery remains the mainstay of therapy; however, most patients are either not surgical candidates or suffer from recurrence. There is no approved systemic therapy and the overall survival remains poor. Historically classified as a subtype of hepatocellular carcinoma (HCC), FLC has a unique clinical, histological, and molecular presentation. At the genomic level, FLC contains a single 400kB deletion in chromosome 19, leading to a functional DNAJB1-PRKACA fusion protein. In this review, we detail the recent advances in our understanding of the molecular underpinnings of FLC and outline the current knowledge gaps.

 
  • References

  • 1 El-Serag HB, Davila JA. Is fibrolamellar carcinoma different from hepatocellular carcinoma? A US population-based study. Hepatology 2004; 39 (03) 798-803
  • 2 Eggert T, McGlynn KA, Duffy A, Manns MP, Greten TF, Altekruse SF. Epidemiology of fibrolamellar hepatocellular carcinoma in the USA, 2000-10. Gut 2013; 62 (11) 1667-1668
  • 3 Torbenson M. Fibrolamellar carcinoma: 2012 update. Scientifica (Cairo) 2012; 2012: 743790
  • 4 Mavros MN, Mayo SC, Hyder O, Pawlik TM. A systematic review: treatment and prognosis of patients with fibrolamellar hepatocellular carcinoma. J Am Coll Surg 2012; 215 (06) 820-830
  • 5 Edmondson HA. Differential diagnosis of tumors and tumor-like lesions of liver in infancy and childhood. AMA J Dis Child 1956; 91 (02) 168-186
  • 6 Craig JR, Peters RL, Edmondson HA, Omata M. Fibrolamellar carcinoma of the liver: a tumor of adolescents and young adults with distinctive clinico-pathologic features. Cancer 1980; 46 (02) 372-379
  • 7 Malouf G, Falissard B, Azoulay D. , et al. Is histological diagnosis of primary liver carcinomas with fibrous stroma reproducible among experts?. J Clin Pathol 2009; 62 (06) 519-524
  • 8 Abdul-Al HM, Wang G, Makhlouf HR, Goodman ZD. Fibrolamellar hepatocellular carcinoma: an immunohistochemical comparison with conventional hepatocellular carcinoma. Int J Surg Pathol 2010; 18 (05) 313-318
  • 9 Ross HM, Daniel HDJ, Vivekanandan P. , et al. Fibrolamellar carcinomas are positive for CD68. Mod Pathol 2011; 24 (03) 390-395
  • 10 Simon EP, Freije CA, Farber BA. , et al. Transcriptomic characterization of fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A 2015; 112 (44) E5916-E5925
  • 11 Yamashita S, Vauthey JN, Kaseb AO. , et al. Prognosis of fibrolamellar carcinoma compared to non-cirrhotic conventional hepatocellular carcinoma. J Gastrointest Surg 2016; 20 (10) 1725-1731
  • 12 Fonseca GM, Varella AD, Coelho FF, Abe ES, Dumarco RB, Herman P. Downstaging and resection after neoadjuvant therapy for fibrolamellar hepatocellular carcinoma. World J Gastrointest Surg 2014; 6 (06) 107-111
  • 13 Fakih M. A case of fibrolamellar cancer with a palliative response and minor radiographic regression with erlotinib and bevacizumab combination therapy. Am J Ther 2014; 21 (06) e207-e210
  • 14 Gras P, Truant S, Boige V. , et al. Prolonged complete response after GEMOX chemotherapy in a patient with advanced fibrolamellar hepatocellular carcinoma. Case Rep Oncol 2012; 5 (01) 169-172
  • 15 Ang CS, Kelley RK, Choti MA. , et al. Clinicopathologic characteristics and survival outcomes of patients with fibrolamellar carcinoma: data from the fibrolamellar carcinoma consortium. Gastrointest Cancer Res 2013; 6 (01) 3-9
  • 16 Moreno-Luna LE, Arrieta O, García-Leiva J. , et al. Clinical and pathologic factors associated with survival in young adult patients with fibrolamellar hepatocarcinoma. BMC Cancer 2005; 5: 142
  • 17 Eggert T, McGlynn K, Greten TF, Altekruse S. Response to fibrolamellar hepatocellular carcinoma versus conventional hepatocellular carcinoma: better 5-year survival or artefactual result of research methodology?. Gut 2013; 63: 1524
  • 18 Mayo SC, Mavros MN, Nathan H. , et al. Treatment and prognosis of patients with fibrolamellar hepatocellular carcinoma: a national perspective. J Am Coll Surg 2014; 218 (02) 196-205
  • 19 Stipa F, Yoon SS, Liau KH. , et al. Outcome of patients with fibrolamellar hepatocellular carcinoma. Cancer 2006; 106 (06) 1331-1338
  • 20 Hemming AW, Langer B, Sheiner P, Greig PD, Taylor BR. Aggressive surgical management of fibrolamellar hepatocellular carcinoma. J Gastrointest Surg 1997; 1 (04) 342-346
  • 21 Atienza LG, Berger J, Mei X. , et al. Liver transplantation for fibrolamellar hepatocellular carcinoma: a national perspective. J Surg Oncol 2017; 115 (03) 319-323
  • 22 Njei B, Konjeti VR, Ditah I. Prognosis of patients with fibrolamellar hepatocellular carcinoma versus conventional hepatocellular carcinoma: a systematic review and meta-analysis. Gastrointest Cancer Res 2014; 7 (02) 49-54
  • 23 Ward SC, Waxman S. Fibrolamellar carcinoma: a review with focus on genetics and comparison to other malignant primary liver tumors. Semin Liver Dis 2011; 31 (01) 61-70
  • 24 Lowichik A, Schneider NR, Tonk V, Ansari MQ, Timmons CF. Report of a complex karyotype in recurrent metastatic fibrolamellar hepatocellular carcinoma and a review of hepatocellular carcinoma cytogenetics. Cancer Genet Cytogenet 1996; 88 (02) 170-174
  • 25 Wilkens L, Bredt M, Flemming P, Kubicka S, Klempnauer J, Kreipe H. Cytogenetic aberrations in primary and recurrent fibrolamellar hepatocellular carcinoma detected by comparative genomic hybridization. Am J Clin Pathol 2000; 114 (06) 867-874
  • 26 Kakar S, Chen X, Ho C. , et al. Chromosomal changes in fibrolamellar hepatocellular carcinoma detected by array comparative genomic hybridization. Mod Pathol 2008; 22 (01) 134-141
  • 27 Darcy DG, Chiaroni-Clarke R, Murphy JM. , et al. The genomic landscape of fibrolamellar hepatocellular carcinoma: whole genome sequencing of ten patients. Oncotarget 2015; 6 (02) 755-770
  • 28 Honeyman JN, Simon EP, Robine N. , et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 2014; 343 (6174): 1010-1014
  • 29 Graham RP, Jin L, Knutson DL. , et al. DNAJB1-PRKACA is specific for fibrolamellar carcinoma. Mod Pathol 2015; 28 (06) 822-829
  • 30 Dinh TA, Vitucci EC, Wauthier E. , et al. Comprehensive analysis of The Cancer Genome Atlas reveals a unique gene and non-coding RNA signature of fibrolamellar carcinoma. Sci Rep 2017; 7: 44653
  • 31 Xu L, Hazard FK, Zmoos AF. , et al. Genomic analysis of fibrolamellar hepatocellular carcinoma. Hum Mol Genet 2015; 24 (01) 50-63
  • 32 Malouf GG, Tahara T, Paradis V. , et al. Methylome sequencing for fibrolamellar hepatocellular carcinoma depicts distinctive features. Epigenetics 2015; 10 (09) 872-881
  • 33 Cornella H, Alsinet C, Sayols S. , et al. Unique genomic profile of fibrolamellar hepatocellular carcinoma. Gastroenterology 2015; 148 (04) 806-18.e10
  • 34 Kastenhuber ER, Lalazar G, Houlihan SL. , et al. DNAJB1-PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A 2017; 114 (50) 13076-13084
  • 35 Engelholm LH, Riaz A, Serra D. , et al. CRISPR/Cas9 engineering of adult mouse liver demonstrates that the Dnajb1-Prkaca gene fusion is sufficient to induce tumors resembling fibrolamellar hepatocellular carcinoma. Gastroenterology 2017;S0016-5085(17)36148-6
  • 36 Kirschner LS, Carney JA, Pack SD. , et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000; 26 (01) 89-92
  • 37 Beuschlein F, Fassnacht M, Assié G. , et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome. N Engl J Med 2014; 370 (11) 1019-1028
  • 38 Cao Y, He M, Gao Z. , et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome. Science 2014; 344 (6186): 913-917
  • 39 Di Dalmazi G, Kisker C, Calebiro D. , et al. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study. J Clin Endocrinol Metab 2014; 99 (10) E2093-E2100
  • 40 Sato Y, Maekawa S, Ishii R. , et al. Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome. Science 2014; 344 (6186): 917-920
  • 41 Scott JD, Dessauer CW, Taskén K. Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol 2013; 53: 187-210
  • 42 Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 2017; 152 (04) 745-761
  • 43 Oikawa T, Wauthier E, Dinh TA. , et al. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nat Commun 2015; 6: 8070
  • 44 Sorenson EC, Khanin R, Bamboat ZM. , et al. Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS One 2017; 12 (05) e0176562
  • 45 Pinna AD, Iwatsuki S, Lee RG. , et al. Treatment of fibrolamellar hepatoma with subtotal hepatectomy or transplantation. Hepatology 1997; 26 (04) 877-883
  • 46 Ohtake Y, Maruko A, Ohishi N, Fukumoto M, Ohkubo Y. Effect of aging on EGF-induced proliferative response in primary cultured periportal and perivenous hepatocytes. J Hepatol 2008; 48 (02) 246-254
  • 47 Schmucker DL, Sanchez H. Liver regeneration and aging: a current perspective. Curr Gerontol Geriatr Res 2011; 2011 (11) 526379
  • 48 Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003; 33 (01) 49-54
  • 49 Tavazoie SF, Alarcón C, Oskarsson T. , et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451 (7175): 147-152
  • 50 Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 2013; 15 (06) 546-554
  • 51 Pencheva N, Tran H, Buss C. , et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 2012; 151 (05) 1068-1082
  • 52 Tränkenschuh W, Puls F, Christgen M. , et al. Frequent and distinct aberrations of DNA methylation patterns in fibrolamellar carcinoma of the liver. PLoS One 2010; 5 (10) e13688
  • 53 Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer 2004; 4 (12) 988-993
  • 54 Vivekanandan P, Torbenson M. Epigenetic instability is rare in fibrolamellar carcinomas but common in viral-associated hepatocellular carcinomas. Mod Pathol 2008; 21 (06) 670-675
  • 55 Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 2005; 65 (09) 3497-3508
  • 56 Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 1996; 15 (03) 510-519
  • 57 Graves LM, Bornfeldt KE, Raines EW. , et al. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A 1993; 90 (21) 10300-10304
  • 58 Peters KA, Demaille JG, Fischer EH. Adenosine 3′:5′-monophosphate dependent protein kinase from bovine heart. Characterization of the catalytic subunit. Biochemistry 1977; 16 (26) 5691-5697
  • 59 Takai Y, Kishimoto A, Inoue M, Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum. J Biol Chem 1977; 252 (21) 7603-7609
  • 60 Adrián FJ, Ding Q, Sim T. , et al. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2006; 2 (02) 95-102
  • 61 Malouf GG, Job S, Paradis V. , et al. Transcriptional profiling of pure fibrolamellar hepatocellular carcinoma reveals an endocrine signature. Hepatology 2014; 59 (06) 2228-2237
  • 62 Johnston SRD, Dowsett M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer 2003; 3 (11) 821-831
  • 63 Abou-Alfa G, Mayer RJ, Cosgrove D. , et al. Randomized phase II study of everolimus (E), leuprolide + letrozole (LL), and E + LL (ELL) in patients (pts) with unresectable fibrolamellar carcinoma (FLC). J Clin Oncol 2015; 33: e15149
  • 64 Sen S, Zhou H, Zhang R-D. , et al. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 2002; 94 (17) 1320-1329
  • 65 Crane R, Gadea B, Littlepage L, Wu H, Ruderman JV. Aurora A, meiosis and mitosis. Biol Cell 2004; 96 (03) 215-229
  • 66 Bischoff JR, Anderson L, Zhu Y. , et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998; 17 (11) 3052-3065
  • 67 Jeng YM, Peng SY, Lin CY, Hsu HC. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 2004; 10 (06) 2065-2071
  • 68 Terris B, Pineau P, Bregeaud L. , et al. Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas. Oncogene 1999; 18 (47) 6583-6588
  • 69 Cieply B, Zeng G, Proverbs-Singh T, Geller DA, Monga SPS. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology 2009; 49 (03) 821-831
  • 70 Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303 (5663): 1483-7
  • 71 Riehle KJ, Yeh MM, Yu JJ. , et al. mTORC1 and FGFR1 signaling in fibrolamellar hepatocellular carcinoma. Mod Pathol 2015; 28 (01) 103-110