Semin Respir Crit Care Med 2018; 39(02): 199-212
DOI: 10.1055/s-0037-1617441
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Human Respiratory Microbiome: Implications and Impact

Alicia B. Mitchell
1   School of Molecular Biosciences, University of Technology Sydney, Sydney, New South Wales, Australia
2   Woolcock Institute of Medical Research, Glebe, Sydney, New South Wales, Australia
3   Department of Thoracic Medicine, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
,
Allan R. Glanville
3   Department of Thoracic Medicine, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
4   Department of Medicine, University of New South Wales, Sydney, New South Wales, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
26 March 2018 (online)

Abstract

Once considered a sterile site below the larynx, the tracheobronchial tree and parenchyma of the lungs are now known to harbor a rich diversity of microbial species including bacteria, viruses, fungi, and archaea. Many of these organisms, particularly the viruses which comprise the human respiratory virome, have not been identified, so their true role is unknown. It seems logical to conclude that a “healthy” respiratory microbiome exists which may be modified in disease states and perhaps by therapies such as antibiotics, antifungals, and antiviral treatments. It is likely that there is a critical relationship or equilibrium between components of the microbiome until such time as perturbations occur which lead to a state of dysbiosis or an “unhealthy” microbiome. The act of lung transplantation provides an extreme change to an individual's respiratory microbiome as, in effect, the donor respiratory microbiome is transplanted into the recipient. The mandatory ex-vivo period of the donor lungs appears to be associated with blooms of resident viral species in particular. Subsequently, allograft injury, rejection, and immune suppressive therapy all combine to create periods of dysbiosis which when combined with transient infections such as community acquired respiratory viruses may facilitate the development of chronic allograft dysfunction in predisposed individuals. As our understanding of the respiratory microbiome is rapidly expanding, based on the use of new-generation sequencing tools in particular, it is to be hoped that insights gained into the subtle relationship between the microbiome and the lung allograft will facilitate improved outcomes by directing novel therapeutic endeavors.

 
  • References

  • 1 Gill SR, Pop M, Deboy RT. , et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312 (5778): 1355-1359
  • 2 Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307 (5717): 1915-1920
  • 3 Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449 (7164): 804-810
  • 4 Peterson J, Garges S, Giovanni M. , et al; NIH HMP Working Group. The NIH human microbiome project. Genome Res 2009; 19 (12) 2317-2323
  • 5 DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 2016; 22 (05) 1137-1150
  • 6 Clarridge III JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 2004; 17 (04) 840-862 table of contents
  • 7 Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods 2008; 5 (01) 16-18
  • 8 Becker J, Poroyko V, Bhorade S. The lung microbiome after lung transplantation. Expert Rev Respir Med 2014; 8 (02) 221-231
  • 9 Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects. Chest 1997; 111 (05) 1266-1272
  • 10 Huxley EJ, Viroslav J, Gray WR, Pierce AK. Pharyngeal aspiration in normal adults and patients with depressed consciousness. Am J Med 1978; 64 (04) 564-568
  • 11 Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 2013; 7 (03) 245-257
  • 12 The Lung HIV Microbiome Project (LHMP). National Heart, Lung and Blood Institute, 2015. https://biolincc.nhlbi.nih.gov/studies/lhmp/ . Accessed June 30, 2017
  • 13 Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999; 69 (05) 1035S-1045S
  • 14 DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 2012; 17 (01) 2-11
  • 15 Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6 (237) 237ra65
  • 16 Stout MJ, Conlon B, Landeau M. , et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 2013; 208 (03) 226.e1-226.e7
  • 17 Gollwitzer ES, Saglani S, Trompette A. , et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 2014; 20 (06) 642-647
  • 18 Teo SM, Mok D, Pham K. , et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17 (05) 704-715
  • 19 Biesbroek G, Tsivtsivadze E, Sanders EA. , et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med 2014; 190 (11) 1283-1292
  • 20 Rogers GB, van der Gast CJ, Cuthbertson L. , et al. Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax 2013; 68 (08) 731-737
  • 21 Rogers GB, Zain NM, Bruce KD. , et al. A novel microbiota stratification system predicts future exacerbations in bronchiectasis. Ann Am Thorac Soc 2014; 11 (04) 496-503
  • 22 Molyneaux PL, Mallia P, Cox MJ. , et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188 (10) 1224-1231
  • 23 Cox MJ, Allgaier M, Taylor B. , et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One 2010; 5 (06) e11044
  • 24 Zhao J, Murray S, Lipuma JJ. Modeling the impact of antibiotic exposure on human microbiota. Sci Rep 2014; 4: 4345
  • 25 Zhao J, Schloss PD, Kalikin LM. , et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A 2012; 109 (15) 5809-5814
  • 26 Goddard AF, Staudinger BJ, Dowd SE. , et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci U S A 2012; 109 (34) 13769-13774
  • 27 Bassis CM, Erb-Downward JR, Dickson RP. , et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 2015; 6 (02) e00037
  • 28 Segal LN, Alekseyenko AV, Clemente JC. , et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 2013; 1 (01) 19
  • 29 Sze MA, Dimitriu PA, Hayashi S. , et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 185 (10) 1073-1080
  • 30 West JB. Regional differences in the lung. Chest 1978; 74 (04) 426-437
  • 31 O'Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 2016; 196 (12) 4839-4847
  • 32 Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol 2016; 78: 481-504
  • 33 Bidan CM, Veldsink AC, Meurs H, Gosens R. Airway and extracellular matrix mechanics in COPD. Front Physiol 2015; 6: 346
  • 34 Postma DS, Timens W. Remodeling in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006; 3 (05) 434-439
  • 35 Dickson RP, Erb-Downward JR, Prescott HC. , et al. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J Clin Microbiol 2014; 52 (10) 3605-3613
  • 36 Hilty M, Burke C, Pedro H. , et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5 (01) e8578
  • 37 Dickson RP, Erb-Downward JR, Freeman CM. , et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 2015; 12 (06) 821-830
  • 38 Willner D, Haynes MR, Furlan M. , et al. Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung. Am J Respir Cell Mol Biol 2012; 46 (02) 127-131
  • 39 Madan JC, Koestler DC, Stanton BA. , et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio 2012; 3 (04) 3
  • 40 Trompette A, Gollwitzer ES, Yadava K. , et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20 (02) 159-166
  • 41 Inagaki H, Suzuki T, Nomoto K, Yoshikai Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect Immun 1996; 64 (08) 3280-3287
  • 42 Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012; 129 (02) 434-440 , 440.e1–440.e2
  • 43 Bruzzese E, Callegari ML, Raia V. , et al. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 2014; 9 (02) e87796
  • 44 Bisgaard H, Li N, Bonnelykke K. , et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 2011; 128 (03) 646-52.e1 , 5
  • 45 Oyama N, Sudo N, Sogawa H, Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J Allergy Clin Immunol 2001; 107 (01) 153-159
  • 46 Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 2013; 4 (02) 158-164
  • 47 Rogers GB, van der Gast CJ, Serisier DJ. Predominant pathogen competition and core microbiota divergence in chronic airway infection. ISME J 2015; 9 (01) 217-225
  • 48 Dagan R, Sikuler-Cohen M, Zamir O, Janco J, Givon-Lavi N, Fraser D. Effect of a conjugate pneumococcal vaccine on the occurrence of respiratory infections and antibiotic use in day-care center attendees. Pediatr Infect Dis J 2001; 20 (10) 951-958
  • 49 Wang J, Li F, Wei H, Lian ZX, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med 2014; 211 (12) 2397-2410
  • 50 Clarke TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligands. Infect Immun 2014; 82 (11) 4596-4606
  • 51 Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16 (02) 228-231
  • 52 Short KR, Vissers M, de Kleijn S. , et al. Bacterial lipopolysaccharide inhibits influenza virus infection of human macrophages and the consequent induction of CD8+ T cell immunity. J Innate Immun 2014; 6 (02) 129-139
  • 53 Ni K, Li S, Xia Q. , et al. Pharyngeal microflora disruption by antibiotics promotes airway hyperresponsiveness after respiratory syncytial virus infection. PLoS One 2012; 7 (07) e41104
  • 54 Worlitzsch D, Tarran R, Ulrich M. , et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109 (03) 317-325
  • 55 Schmidt A, Belaaouaj A, Bissinger R. , et al. Neutrophil elastase-mediated increase in airway temperature during inflammation. J Cyst Fibros 2014; 13 (06) 623-631
  • 56 Kanangat S, Meduri GU, Tolley EA. , et al. Effects of cytokines and endotoxin on the intracellular growth of bacteria. Infect Immun 1999; 67 (06) 2834-2840
  • 57 Meduri GU, Kanangat S, Stefan J, Tolley E, Schaberg D. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. Am J Respir Crit Care Med 1999; 160 (03) 961-967
  • 58 Erb-Downward JR, Thompson DL, Han MK. , et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One 2011; 6 (02) e16384
  • 59 Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One 2012; 7 (10) e47305
  • 60 Sethi S, Sethi R, Eschberger K. , et al. Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 176 (04) 356-361
  • 61 Millares L, Ferrari R, Gallego M. , et al. Bronchial microbiome of severe COPD patients colonised by Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2014; 33 (07) 1101-1111
  • 62 Huang YJ, Sethi S, Murphy T, Nariya S, Boushey HA, Lynch SV. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol 2014; 52 (08) 2813-2823
  • 63 Shulgina L, Cahn AP, Chilvers ER. , et al. Treating idiopathic pulmonary fibrosis with the addition of co-trimoxazole: a randomised controlled trial. Thorax 2013; 68 (02) 155-162
  • 64 Raghu G, Anstrom KJ, King Jr TE, Lasky JA, Martinez FJ. ; Idiopathic Pulmonary Fibrosis Clinical Research Network. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med 2012; 366 (21) 1968-1977
  • 65 Molyneaux PL, Cox MJ, Willis-Owen SA. , et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2014; 190 (08) 906-913
  • 66 Molyneaux PL, Maher TM. Respiratory microbiome in IPF: cause, effect, or biomarker?. Lancet Respir Med 2014; 2 (07) 511-513
  • 67 Salisbury ML, Han MK, Dickson RP, Molyneaux PL. Microbiome in interstitial lung disease: from pathogenesis to treatment target. Curr Opin Pulm Med 2017; 23 (05) 404-410
  • 68 Han MK, Zhou Y, Murray S. , et al; COMET Investigators. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med 2014; 2 (07) 548-556
  • 69 Knippenberg S, Ueberberg B, Maus R. , et al. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Thorax 2015; 70 (07) 636-646
  • 70 Ramsey BW. Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 1996; 335 (03) 179-188
  • 71 Hurley MN, Ariff AH, Bertenshaw C, Bhatt J, Smyth AR. Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. J Cyst Fibros 2012; 11 (04) 288-292
  • 72 Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 2003; 123 (05) 1495-1502
  • 73 Carmody LA, Zhao J, Kalikin LM. , et al. The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation. Microbiome 2015; 3: 12
  • 74 Carmody LA, Zhao J, Schloss PD. , et al. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc 2013; 10 (03) 179-187
  • 75 Stressmann FA, Rogers GB, Marsh P. , et al. Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation?. J Cyst Fibros 2011; 10 (05) 357-365
  • 76 Price KE, Hampton TH, Gifford AH. , et al. Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 2013; 1 (01) 27
  • 77 Weiss B, Bujanover Y, Yahav Y, Vilozni D, Fireman E, Efrati O. Probiotic supplementation affects pulmonary exacerbations in patients with cystic fibrosis: a pilot study. Pediatr Pulmonol 2010; 45 (06) 536-540
  • 78 Rana A, Gruessner A, Agopian VG. , et al. Survival benefit of solid-organ transplant in the United States. JAMA Surg 2015; 150 (03) 252-259
  • 79 Borewicz K, Pragman AA, Kim HB, Hertz M, Wendt C, Isaacson RE. Longitudinal analysis of the lung microbiome in lung transplantation. FEMS Microbiol Lett 2013; 339 (01) 57-65
  • 80 Luna R, Sagar M, Crabtree S. , et al. Characterization of the lung microbiome in pediatric lung transplant recipients. J Heart Lung Transplant 2013; 32: S291
  • 81 Willner DL, Hugenholtz P, Yerkovich ST. , et al. Reestablishment of recipient-associated microbiota in the lung allograft is linked to reduced risk of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2013; 187 (06) 640-647
  • 82 Dickson RP, Erb-Downward JR, Freeman CM. , et al. Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations. PLoS One 2014; 9 (05) e97214
  • 83 Ison MG, Hager J, Blumberg E. , et al. Donor-derived disease transmission events in the United States: data reviewed by the OPTN/UNOS Disease Transmission Advisory Committee. Am J Transplant 2009; 9 (08) 1929-1935
  • 84 Young LR, Hadjiliadis D, Davis RD, Palmer SM. Lung transplantation exacerbates gastroesophageal reflux disease. Chest 2003; 124 (05) 1689-1693
  • 85 Ferdinande P, Bruyninckx F, Van Raemdonck D, Daenen W, Verleden G. . Leuven Lung Transplant Group. Phrenic nerve dysfunction after heart-lung and lung transplantation. J Heart Lung Transplant 2004; 23 (01) 105-109
  • 86 Herve P, Silbert D, Cerrina J, Simonneau G, Dartevelle P. ; The Paris-Sud Lung Transplant Group. Impairment of bronchial mucociliary clearance in long-term survivors of heart/lung and double-lung transplantation. Chest 1993; 103 (01) 59-63
  • 87 Bhorade SM, Villanueva J, Jordan A, Garrity ER. Immunosuppressive regimens in lung transplant recipients. Drugs Today (Barc) 2004; 40 (12) 1003-1012
  • 88 Rosen R, Amirault J, Liu H. , et al. Changes in gastric and lung microflora with acid suppression: acid suppression and bacterial growth. JAMA Pediatr 2014; 168 (10) 932-937
  • 89 Dasaraju PV, Liu C. Infections of the respiratory system. In: Baron S. , ed. Medical Microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch, Department of Microbiology; 1996
  • 90 Avila M, Ojcius DM, Yilmaz O. The oral microbiota: living with a permanent guest. DNA Cell Biol 2009; 28 (08) 405-411
  • 91 Kenn K, Hess MM. Vocal cord dysfunction: an important differential diagnosis of bronchial asthma. Dtsch Arztebl Int 2008; 105 (41) 699-704
  • 92 Martinu T, Chen DF, Palmer SM. Acute rejection and humoral sensitization in lung transplant recipients. Proc Am Thorac Soc 2009; 6 (01) 54-65
  • 93 Glanville AR, Gencay M, Tamm M. , et al. Chlamydia pneumoniae infection after lung transplantation. J Heart Lung Transplant 2005; 24 (02) 131-136
  • 94 Vilchez RA, McCurry K, Dauber J. , et al. The epidemiology of parainfluenza virus infection in lung transplant recipients. Clin Infect Dis 2001; 33 (12) 2004-2008
  • 95 Ahya VN, Douglas LP, Andreadis C. , et al. Association between elevated whole blood Epstein-Barr virus (EBV)-encoded RNA EBV polymerase chain reaction and reduced incidence of acute lung allograft rejection. J Heart Lung Transplant 2007; 26 (08) 839-844
  • 96 Yusen RD, Christie JD, Edwards LB. , et al; International Society for Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Adult Lung and Heart-Lung Transplant Report--2013; focus theme: age. J Heart Lung Transplant 2013; 32 (10) 965-978
  • 97 Thompson BR, Hodgson YM, Kotsimbos T. , et al. Bronchiolitis obliterans syndrome leads to a functional deterioration of the acinus post lung transplant. Thorax 2014; 69 (05) 487-488
  • 98 Billings JL, Hertz MI, Savik K, Wendt CH. Respiratory viruses and chronic rejection in lung transplant recipients. J Heart Lung Transplant 2002; 21 (05) 559-566
  • 99 Vos R, Vanaudenaerde BM, Geudens N, Dupont LJ, Van Raemdonck DE, Verleden GM. Pseudomonal airway colonisation: risk factor for bronchiolitis obliterans syndrome after lung transplantation?. Eur Respir J 2008; 31 (05) 1037-1045
  • 100 Charlson ES, Diamond JM, Bittinger K. , et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am J Respir Crit Care Med 2012; 186 (06) 536-545
  • 101 Gottlieb J, Mattner F, Weissbrodt H. , et al. Impact of graft colonization with gram-negative bacteria after lung transplantation on the development of bronchiolitis obliterans syndrome in recipients with cystic fibrosis. Respir Med 2009; 103 (05) 743-749
  • 102 Vos R, Vanaudenaerde BM, De Vleeschauwer SI, Van Raemdonck DE, Dupont LJ, Verleden GM. De novo or persistent pseudomonal airway colonization after lung transplantation: importance for bronchiolitis obliterans syndrome?. Transplantation 2008; 86 (04) 624-625 , author reply 635–636
  • 103 Botha P, Archer L, Anderson RL. , et al. Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. Transplantation 2008; 85 (05) 771-774
  • 104 Vital D, Hofer M, Benden C, Holzmann D, Boehler A. Impact of sinus surgery on pseudomonal airway colonization, bronchiolitis obliterans syndrome and survival in cystic fibrosis lung transplant recipients. Respiration 2013; 86 (01) 25-31
  • 105 Tipton L, Ghedin E, Morris A. The lung mycobiome in the next-generation sequencing era. Virulence 2017; 8 (03) 334-341
  • 106 Delhaes L, Monchy S, Fréalle E. , et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community--implications for therapeutic management. PLoS One 2012; 7 (04) e36313
  • 107 Harrison M, Twomey K, Mccarthy Y. , et al. LSC 2013 abstract: The role of second-generation sequencing to characterize the fungal microbiota in the adult cystic fibrosis airway, and its correlation with standard culture-based methods and clinical phenotype. Eur Respir J 2013; 42: OP02
  • 108 Willger SD, Grim SL, Dolben EL. , et al. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. Microbiome 2014; 2: 40
  • 109 Kim SH, Clark ST, Surendra A. , et al. Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog 2015; 11 (11) e1005308
  • 110 Bafadhel M, McKenna S, Agbetile J. , et al. Aspergillus fumigatus during stable state and exacerbations of COPD. Eur Respir J 2014; 43 (01) 64-71
  • 111 Cui L, Lucht L, Tipton L. , et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med 2015; 191 (08) 932-942
  • 112 Weigt SS, Elashoff RM, Huang C. , et al. Aspergillus colonization of the lung allograft is a risk factor for bronchiolitis obliterans syndrome. Am J Transplant 2009; 9 (08) 1903-1911
  • 113 Willner D, Furlan M, Haynes M. , et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One 2009; 4 (10) e7370
  • 114 Lysholm F, Wetterbom A, Lindau C. , et al. Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. PLoS One 2012; 7 (02) e30875
  • 115 Yang J, Yang F, Ren L. , et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol 2011; 49 (10) 3463-3469
  • 116 Wylie KM, Mihindukulasuriya KA, Sodergren E, Weinstock GM, Storch GA. Sequence analysis of the human virome in febrile and afebrile children. PLoS One 2012; 7 (06) e27735
  • 117 Young JC, Chehoud C, Bittinger K. , et al. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am J Transplant 2015; 15 (01) 200-209
  • 118 Abbas AA, Diamond JM, Chehoud C. , et al. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am J Transplant 2017; 17 (05) 1313-1324
  • 119 Garantziotis S, Howell DN, McAdams HP, Davis RD, Henshaw NG, Palmer SM. Influenza pneumonia in lung transplant recipients: clinical features and association with bronchiolitis obliterans syndrome. Chest 2001; 119 (04) 1277-1280
  • 120 Gottlieb J, Schulz TF, Welte T. , et al. Community-acquired respiratory viral infections in lung transplant recipients: a single season cohort study. Transplantation 2009; 87 (10) 1530-1537
  • 121 Khalifah AP, Hachem RR, Chakinala MM. , et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 2004; 170 (02) 181-187
  • 122 Kumar D, Erdman D, Keshavjee S. , et al. Clinical impact of community-acquired respiratory viruses on bronchiolitis obliterans after lung transplant. Am J Transplant 2005; 5 (08) 2031-2036
  • 123 Costa C, Delsedime L, Solidoro P. , et al. Herpesviruses detection by quantitative real-time polymerase chain reaction in bronchoalveolar lavage and transbronchial biopsy in lung transplant: viral infections and histopathological correlation. Transplant Proc 2010; 42 (04) 1270-1274
  • 124 Bakker NA, Verschuuren EA, Erasmus ME. , et al. Epstein-Barr virus-DNA load monitoring late after lung transplantation: a surrogate marker of the degree of immunosuppression and a safe guide to reduce immunosuppression. Transplantation 2007; 83 (04) 433-438
  • 125 Cao S, Strong MJ, Wang X. , et al. High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project. J Virol 2015; 89 (01) 713-729
  • 126 Engelmann I, Welte T, Fühner T. , et al. Detection of Epstein-Barr virus DNA in peripheral blood is associated with the development of bronchiolitis obliterans syndrome after lung transplantation. J Clin Virol 2009; 45 (01) 47-53
  • 127 Finlen Copeland CA, Davis WA, Snyder LD. , et al. Long-term efficacy and safety of 12 months of valganciclovir prophylaxis compared with 3 months after lung transplantation: a single-center, long-term follow-up analysis from a randomized, controlled cytomegalovirus prevention trial. J Heart Lung Transplant 2011; 30 (09) 990-996
  • 128 Iwasenko JM, Scott GM, Naing Z, Glanville AR, Rawlinson WD. Diversity of antiviral-resistant human cytomegalovirus in heart and lung transplant recipients. Transpl Infect Dis 2011; 13 (02) 145-153
  • 129 Kerschner H, Jaksch P, Zweytick B, Puchhammer-Stöckl E. Detection of human cytomegalovirus in bronchoalveolar lavage fluid of lung transplant recipients reflects local virus replication and not contamination from the throat. J Clin Microbiol 2010; 48 (11) 4273-4274
  • 130 Hammond SP, Martin ST, Roberts K. , et al. Cytomegalovirus disease in lung transplantation: impact of recipient seropositivity and duration of antiviral prophylaxis. Transpl Infect Dis 2013; 15 (02) 163-170