Hamostaseologie 2008; 28(05): 272-288
DOI: 10.1055/s-0037-1617176
Hämostaseologie
Schattauer GmbH

Molekularbiologie und Hämostase

Molecular biology and haemostasis
Ch. Mannhalter
1   Klinisches Institut für Medizinische u. Chemische Labordiagnostik, Medizinische Universität Wien, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
29 December 2017 (online)

Zusammenfassung

Für die Diagnostik von Erkrankungen spielen molekularbiologische Methoden bei schweren angeborenen Krankheiten (z. B. Hämophilie A oder B) eine wichtige Rolle. Auch zur Diagnostik polygenetischer Erkrankungen (z. B. venöse und arterielle Thrombosen) sind sie unentbehrlich. Neben der Analyse der zwei häufigsten genetischen Defekte (Inversion im Intron 22 und Intron 1) im Faktor-VIII-Gen als Ursache der schweren Hämophilie A wurde in den vergangenen Jahren die Sequenzierung des Faktor-VIII-Gens in mehreren Zentren eingeführt und wird nun in der Hämophilie- und Überträgerinnen- Diagnostik eingesetzt. Bei Patienten mit Thrombophilie trägt der Nachweis von Mutationen im Protein-C- und Protein-S-Gen zur Verbesserung der Diagnostik bei bekanntem familiären Protein-C- bzw. -S-Mangel bei. Die Analysen der Arg506Gln-Mutation im Faktor-V-Gen (Faktor-V-Leiden) und die 20210G>A-Mutation im Prothrombin-Gen, die das Risiko für venöse Thrombose beeinflussen, können potenziell helfen, das individuelle Risiko für eine Thrombose bzw. Rezidivthrombose besser einzuschätzen. Allerdings führt die unkritische Untersuchung genetischer Ursachen der Thrombose zu keinem wesentlichen Informationsgewinn hinsichtlich Behandlung und Beratung der Patienten und kostet Zeit und Geld. Daher sollen immer nur jene Tests durchgeführt werden, die medizinische bzw. therapeutische Konsequenzen nach sich ziehen. Trotz der Bedeutung der molekulargenetischen Diagnostik sind die Einsatzmöglichkeiten der Mutationsdiagnostik im klinischen Alltag eines Gerinnungslabors begrenzt. Große Studien haben gezeigt, dass eine Mutation nicht bei jedem Menschen die gleiche Auswirkung hat, da endogene und exogene modulierende Faktoren den Phänotyp beeinflussen. Da sehr wenig über modulierende Faktoren bekannt ist, ist es häufig schwierig, die Auswirkung einer Mutation in ihrer Tragweite zu bewerten. Es ist daher von außerordentlicher Wichtigkeit, die Forschung voranzutreiben, um Gen- Gen- und Gen-Umwelt-Interaktionen zu verstehen, damit in Zukunft eine zuverlässige Interpretation der Mutationsergebnisse möglich wird.

Summary

Molecular biological methods have become increasingly important not only in the diagnostics of inherited monogenetic diseases such as hemophilia A or B but also in the diagnostics of polygenetic diseases e.g. venous and arterial thrombosis. In haemophilia A, sequencing of the factor VIII gene has been established in addition to the analysis of the two most frequent genetic abnormalities, the inversions in intron 22 and intron 1, in several centers. Molecular testing has proved helpful to identify haemophilia patients at high risk to develop inhibitors as well as in carrier analysis. In patients with familial protein C or protein S deficiency mutation analysis contributes to the verification of the diagnosis. The frequently performed tests for the factor V Leiden mutation and the prothrombin 20210G>A variation can potentially support the estimation of the thrombotic risk as well as the risk of recurrence. However, any uncritical application of these genetic tests does not improve diagnostics nor does it support therapeutic decision making or counselling of the patient. Therefore, one should only do genetic tests with medical or therapeutic consequences. The applicability of mutation analysis in the daily routine is still limited in spite of the importance of molecular diagnostics in the understanding of pathomechanisms of haemostatic disorders. As has been demonstrated in large studies, the phenotypic effects of mutations can vary significantly between individuals. Endogenous and exogenous modulators that are still largely unknown, play a role. Currently, the understanding of these modulators is limited, and large multicenter studies and meta-analyses are needed for a better understanding of gene-gene and gene-environment interactions.

 
  • Literatur

  • 1 Aleksic N, Folsom AR, Cushman M. et al. Prospective study of the A455V polymorphism in the thrombomodulin gene, plasma thrombomodulin, and incidence of venous thromboembolism: the LITE Study. J Thromb Haemost 2003; 1: 88-94.
  • 2 Antonarakis SE. Molecular genetics of coagulation factor VIII gene and hemophilia A. Thromb Haemost 1995; 74: 322-328.
  • 3 Bach J, Endler G, Winkelmann BR. et al. Coagulation factor XII (FXII) activity, activated FXII, distribution of FXII C46T gene polymorphism and coronary risk. J Thromb Haemost 2008; 6: 291-296.
  • 4 Bagnall RD, Waseem N, Green PM. et al. Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. Blood 2002; 99: 168-174.
  • 5 Bernardi F, Faioni EM, Castoldi E. et al. A factor V genetic component differing from factor V R506Q contributes to the activated protein C resistance phenotype. Blood 1997; 90: 1552-1557.
  • 6 Bertina RM, Koeleman BP, Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64-67.
  • 7 Biguzzi E, Razzari C, Lane DA. et al. Protein S Italian Team. Molecular diversity and thrombotic risk in protein S deficiency: the PROSIT study. Hum Mutat 2005; 25: 259-269.
  • 8 Blombäck M, Blombäck B, Mammen EF. et al. Fibrinogen Detroit – a molecular defect in the N-terminal disulphide knot of human fibrinogen. Nature 1968; 218: 134-137.
  • 9 Bosler D, Mattson J, Crisan D. Phenotypic Heterogeneity in patients with homozygous prothrombin 20210AA genotype. A paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 2006; 8: 420-425.
  • 10 Camire RM, Pollak ES. Genetics of Coagulation. In: Colman RW, Marder VJ. Clowes et al (eds). Hemostasis and Thrombosis. Basic principles and clinical practice. 5th edition. Philadelphia: Lippincott, Williams & Williams; 2006: 59-89.
  • 11 Carty CL, Cushman M, Jones D. et al. Associations between common fibrinogen gene polymorphisms and cardiovascular disease in older adults. The Cardiovascular Health Study. Thromb Haemost 2008; 99: 388-395.
  • 12 Catto AJ, Kohler HP, Coore J. et al. Association of a common polymorphsim in the factor XIII gene with venous thrombosis. Blood 1999; 93: 906-908.
  • 13 Cooper DN, Millar DS, Wacey A. et al. Inherited factor X deficiency: Molecular genetics and pathophysiology. Thromb Haemost 1997; 78: 161-172.
  • 14 Cripe LD, Moore D, Kane WH. Structure of the gene for human coagulation factor V. Biochemistry 1992; 31: 3777-3785.
  • 15 Cristina L, Benilde C, Michela C. et al. High plasma levels of factor VIII and risk of recurrence of venous thromboembolism. Br J Haematol 2004; 124: 504-510.
  • 16 Cushman M, Cornell A, Folsom AR. et al. Associations of the beta-fibrinogen Hae III and factor XIII Val34Leu gene variants with venous thrombosis. Thromb Res 2007; 121: 339-345.
  • 17 Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 1993; 90: 1004-1008.
  • 18 Dufner GS, Marbet GA. Der Faktor XIII des Menschen: eine Übersicht. Hämostaseologie 2002; 22: 1-7.
  • 19 Egeberg O. Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh 1965; 13: 516-530.
  • 20 Ehrenforth S, Nemes L, Mannhalter C. et al. Impact of environmental and hereditary risk factors on the clinical manifestation of thrombophilia in homozygous carriers of factor V:G1691A. J Thromb Haemost 2004; 2: 430-436.
  • 21 Endler G, Exner M, Mannhalter C. et al. A common C→T polymorphism at nt 46 in the promoter region of coagulation factor XII is associated with decreased factor XII activity. Thromb Res 2001; 101: 255-260.
  • 22 Endler G, Mannhalter C. Polymorphisms in coagulation factor genes and their impact on arterial and venous thrombosis. Clin Chim Acta 2003; 330: 31-55.
  • 23 Endler G, Marsik C, Jilma B. et al. Evidence of a U-shaped association between factor XII activity and overall survival. J Thromb Haemost 2007; 5: 1143-1148.
  • 24 Ernst E, Koenig W. Fibrinogen and cardiovascular risk. Vasc Med 1997; 2: 115-125.
  • 25 Feinbloom D, Bauer KA. Assessment of hemostatic risk factors in predicting arterial thrombotic events. Arterioscler Thromb Vasc Biol 2005; 25: 2043-2053.
  • 26 Fibrinogen variants database. www.geht.org.
  • 27 Funk M, Endler G, Lalouschek W. et al. Factor VII gene haplotypes and risk of ischemic stroke. Clin Chem 2006; 52: 1190-1192.
  • 28 Gailani D, Renné T. Intrinsic pathway of coagulation and arterial thrombosis. Arterioscler Thromb Vasc Biol 2007; 27: 2507-2513.
  • 29 Gallimore MJ, Harris SL, Jones DW, Winter M. Plasma levels of factor XII, prekallikrein and high molecular weight kininogen in normal blood donors and patients having suffered venous thrombosis. Thromb Res 2004; 114: 91-96.
  • 30 Gandrille S, Greengard JS, Alhenc-Gelas M. et al. Incidence of activated protein C resistance caused by the ARG 506 GLN mutation in factor V in 113 unrelated symptomatic protein C-deficient patients. The French Network on the behalf of INSERM. Blood 1995; 86: 219-224.
  • 31 Girolami A, Randi ML, Gavasso S. et al. The occasional venous thromboses seen in patients with severe (homozygous) FXII deficiency are probably due to associated risk factors: a study of prevalence in 21 patients and review of the literature. J Thromb Thrombol 2004; 17: 139-143.
  • 32 González-Porras JR, García-Sanz R, Alberca I. et al. Risk of recurrent venous thrombosis in patients with G20210A mutation in the prothrombin gene or factor V Leiden mutation. Blood Coagul Fibrinol 2006; 17: 23-28.
  • 33 Green F. Fibrinogen polymorphisms and atherothrombotic disease. Ann NY Acad Sci 2001; 936: 549-559.
  • 34 Griffin JH, Evatt B, Zimmerman TS. et al. Deficiency of protein C in congenital thrombotic disease. J Clin Invest 1981; 68: 1370-1373.
  • 35 Halbmayer WM, Mannhalter C, Feichtinger C. et al. The prevalence of factor XII deficiency in 103 orally anticoagulated patients suffereing from recurrent venous or arterial thromboemblism. Thromb Haemost 1992; 68: 285-290.
  • 36 Heinrich J, Balleisen L, Schulte H. et al. Fibrinogen and factor VII in the prediction of coronary risk. Results form the PROCAM study in healthy men. Arterioscler Thromb 1994; 14: 54-59.
  • 37 Heit JA, Petterson TM, Owen WG. et al. Thrombomodulin gene polymorphisms or haplotypes as potential risk factors for venous thromboembolism: a population-based case-control study. J Thromb Haemost 2005; 3: 710-717.
  • 38 Henriksen RA, Owen WG. Characterization of the catalytic defect in the dysthrombin, thrombin Quick. J Biol Chem 1987; 262: 4664-4669.
  • 39 Henschen A, Kehl M, Lottspeich F. et al. Genetically abnormal fibrinogens – some current characterisation strategies. In: Haverkate F, Henschen A, Nieuwenhuizen W. et al (Hrsg). Fibrinogen. Structure, Functional Aspects, Metabolism. Berlin: Walter de Gruyter; 1983. Vol. 2 125-144.
  • 40 Herrmann FH, Wulff K, Auberger K. et al. Molecular biology and clinical manifestation of hereditary factor VII deficiency. Sem Thromb Hemost 2000; 26: 393-400.
  • 41 Herrmann F, Wulff K. Gerinnungsfaktoren VII, VIII, IX und X. Ausgewählte Aspekte zur Molekulargenetik und Gendiagnostik. Hämostaseologie 2004; 24: 94-107.
  • 42 Heywood DM, Ossei-Gerning N, Grant PJ. Association of factor VII:C levels with environmental and genetic factors in patients with ischaemic heart disease and voronary atheroma characterised by angiography. Thromb Haemost 1996; 76: 161-165.
  • 43 Hu CH, Harris JE, Davie EW, Chung DW. Characterization of the 5‘-flanking region of the gene for the alpha chain of human fibrinogen. J Biol Chem 1995; 270: 28342-28349.
  • 44 Ichinose A. Physiopathology and regulation of factor XIII. Thromb Haemost 2001; 86: 57-65.
  • 45 Kamphuisen PW, Eikenboom JC, Rosendaal FR. et al. High factor VIII antigen levels increase the risk of venous thrombosis but are not associated with polymorphisms in the von Willebrand factor and factor VIII gene. Br J Haematol 2001; 115: 156-158.
  • 46 Kamphuisen PW, Eikenboom JC, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol 2001; 21: 731-738.
  • 47 Kanaji T, Okamura T, Osaki K. et al. A common genetic polymorphism (46 C to T substitution) in the 5‘-untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood 1998 15 91: 2010-2014.
  • 48 Kane WH. Faktor V. In: Colman RW, Marder VJ, Clowes GJN. et al (eds). Hemostasis and Thrombosis. Basic principles and clinical practice. 5th edition. Philadelphia: Lippincott, Williams & Williams; 2006: 177-192.
  • 49 Kemball-Cook G, Tuddenham EGD, Wacey AI. The factor VIII structure and mutation resource site: HAMSTeRS version 4. http://europium.csc. mrc.ac.uk. Nucl Acids Res 1998; 26: 216-219.
  • 50 Kleinschnitz C, Stoll G, Bendszus M. et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203: 513-518.
  • 51 Kohler HP, Futers TS, Grant PJ. FXII (46C→T) polymorphism and in vivo generation of FXII activity – gene frequencies and relationship in patients with coronary artery disease. Thromb Haemost 1999; 81: 745-747.
  • 52 Kyrle PA, Minar E, Hirschl M. et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 2000; 343: 457-462.
  • 53 Labrouche S, Reboul MP, Guérin V. et al. Protein C and protein S assessment in hospital laboratories: which strategy and what role for DNA sequencing?. Blood Coagul Fibrinol 2003; 14: 531-538.
  • 54 Lacquemant C, Gaucher C, Delorme C. et al. Association between high von Willebrand factor levels and the Thr789Ala vWF gene polymorphism but not with nepropathy in type 1 diabetes. The GENEDIAB Study Group and the DESIR Study group. Kidney Int 2000; 57: 1437-1443.
  • 55 Lindhoff-Last E, Luxembourg B. Evidence-based indications for thrombophilia screening. Vasa 2008; 37: 19-30.
  • 56 Lowe GD. Factor IX and thrombosis. Br J Haematol 2001; 115: 507-513.
  • 57 Marchiori A, Mosena L, Prins MH, Prandoni P. The risk of recurrent venous thromboembolism among heterozygous carriers of factor V Leiden or prothrombin G20210A mutation. A systematic review of prospective studies. Haematologica 2007; 92: 1107-1114.
  • 58 Mariani G, Machetti G, Arcieri P. et al. The role of factor VII gene polymorphism in determining FVII activity and antigen plasma level. Blood 1994; 84: 86a.
  • 59 Martinelli I, Battaglioli T, Razzari C, Mannucci PM. Type and location of venous thromboembolism in patients with factor V Leiden or prothrombin G20210A and in those with no thrombophilia. J Thromb Haemost 2007; 5: 98-101.
  • 60 Martiskainen M, Pohjasvaara T, Mikkelsson J. et al. Fibrinogen gene promoter –455 A allele as a risk factor for lacunar stroke. Stroke 2003; 34: 886-891.
  • 61 Meade TW, Ruddock V, Stirling Y. et al. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 1993; 342: 1076-1079.
  • 62 Meyer M. Molekularbiologie der Gerinnung: Fibrinogen, Faktor XIII. Hämostasesologie 2004; 24: 108-115.
  • 63 Miletich J, Sherman L, Broze Jr G. Absence of thrombosis in subjects with heterozygous protein C deficiency. N Engl J Med 1987; 317: 991-996.
  • 64 Morrissey JH. Tissue factor and factor VII initiation of coagulation. In: Colman RW, Hirsh J, Marder VJ. et al (eds). Hemostasis and Thrombosis. Philadelphia: Lippincott Williams & Wilkins; 2001: 89-101.
  • 65 Mosesson MW. Dysfibrinogenemia and thrombosis. Semin Thromb Hemost 1999; 25: 311-319.
  • 66 Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005; 3: 1894-1904.
  • 67 Mustafa S, Pabinger I, Mannhalter C. Protein S deficiency type I: identification of point mutations in 9 of 10 families. Blood 1995; 86: 3444-3451.
  • 68 Mustafa S, Mannhalter C, Rintelen C. et al. Clinical features of thrombophilia in families with gene defects in protein C or protein S combined with factor V Leiden. Blood Coagul Fibrinol 1998; 9: 85-89.
  • 69 Neerman-Arbez M, de Moerloose P, Honsberger A. et al. Molecular analysis of the fibrinogen gene cluster in 16 patients with congenital afibrinogenemia novel truncating mutations in the FGA and FGG genes. Hum Genet 2001; 108: 237-240.
  • 70 Neerman-Arbez M, de Moerloose P. Mutations in the fibrinogen gene cluster accounting for congenital afibrinogenemia: an update and report of 10 novel mutations. Hum Mutat 2007; 28: 540-553.
  • 71 Oldenburg J, Schröder J, Graw J. et al. Bedeutung der Mutationsdiagnostik bei Patienten mit Hämophilie A. Hämostaseologie 2003; 23: 6-12.
  • 72 Pabinger I. Thrombophilia and its impact on pregnancy. Hamostaseologie 2008; 28: 130-134.
  • 73 Peyvandi F, Duga S, Akhavan S. et al. Rare coagulation deficiencies. Haemophilia 2002; 8: 308-321.
  • 74 Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3‘-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698-3703.
  • 75 Reitsma PH, Bernardi F, Doig RG. et al. Protein C deficiency: a database of mutations, 1995 update. On behalf of the Subcommittee on Plasma Coagulation Inhibitors of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 1995; 73: 876-889.
  • 76 Renné T, Pozgajová M, Grüner S. et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202: 271-81.
  • 77 Reuner KH, Jenetzky E, Aleu A. et al. Factor XII C46T gene polymorphism and the risk of cerebral venous thrombosis. Neurology 2008; 70: 129-132.
  • 78 Rintelen C, Pabinger I, Bettelheim P. et al. Impact of the factor II: G20210A variant on the risk of venous thromboembolism in relatives from families with the factor V: R506Q mutation. Eur J Haematol 2001; 67: 165-169.
  • 79 Rubattu S, Di Angelantonio E, Nitsch D. et al. Poly morphisms in prothrombotic genes and their impact on ischemic stroke in a Sardinian population. Thromb Haemost 2005; 93: 1095-1100.
  • 80 Schousboe I. Pharmacological regulation of factor XII activation may be a new target to control pathological coagulation. Biochem Pharmacol 2008; 75: 1007-1013.
  • 81 Sicker T, Hilgenfeld R. Blutgerinnungsfaktor XIII: Aktivierung, Substrate und Struktur einer Transglutaminase. Haemostaseologie 2002; 22: 21-27.
  • 82 Simmonds RE, Ireland H, Lane DA. et al. Clarification of the risk for venous thrombosis associated with hereditary protein S deficiency by investigation of a large kindred with a characterized gene defect. Ann Intern Med 1998; 128: 8-14.
  • 83 Takeda N, Maemura K, Horie S. et al. Thrombomodulin is a clock-controlled gene in vascular endothelial cells. J Biol Chem 2007; 282: 32561-32567.
  • 84 Van Hylckama Vlieg A, van der Linden IK, Bertina RM, Rosendaal FR. High levels of factor IX increase the risk of venous thrombosis. Blood 2000; 95: 3678-3682.
  • 85 Van Minkelen R, de Visser MC, van Hylckama Vlieg A. et al. Sequence variants and haplotypes of the factor IX gene and the risk of venous thrombosis. J Thromb Haemost 2008; 6: 1610-1613.
  • 86 Verschuur M, de Jong M, Felida L. et al. A hepatocyte nuclear factor-3 site in the fibrinogen beta promoter is important for interleukin 6-induced expression, and its activity is influenced by the adjacent –148C/T polymorphism. J Biol Chem 2005; 280: 16763-16771.
  • 87 Viel KR, Machiah DK, Warren DM. et al. A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels. Blood 2007; 109: 3713-3724.
  • 88 Vormittag R, Bencur P, Ay C. et al. Low-density lipoprotein receptor-related protein 1 polymorphism 663 C > T affects clotting factor VIII activity and increases the risk of venous thromboembolism. J Thromb Haemost 2007; 5: 497-502.
  • 89 Weisel JW. Fibrinogen and fibrin. Adv Protein Chem 2005; 70: 247-299.
  • 90 White GC, Rosendaal FR, Aledort LM. et al. Definitions in hemophilia. Revommendation of the Scientific Subcommittee on factor VIII and factor IX of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost 2001; 85: 560.
  • 91 Wu O, Robertson L, Twaddle S. et al. Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. Health Technol Assess 2006; 10: 1-110.
  • 92 Zito F, Drummond F, Bujac SR. et al. Epidemiolgical and genetic association of activated factor XII concentration with factor VII activity, fibrinopeptide A concentration, and risk of coronary heart disease in men. Circulation 2000; 102: 2058-2062.
  • 93 Zito F, Lowe GD, Rumley A. et al. WOSCOPS Study Group West of Scotland Coronary Prevention Study. Association of the factor XII 46C>T polymorphism with risk of coronary heart disease (CHD) in the WOSCOPS study. Atherosclerosis 2002; 165: 153-158.
  • 94 Zivelin A, Griffin JH, Xu X. et al. A single genetic origin for a common Caucasian risk factor for venous thrombosis. Blood 1997; 89: 397-402.