Hamostaseologie 2016; 36(S 02): S13-S20
DOI: 10.1055/s-0037-1617062
Review
Schattauer GmbH

VKCFD2 – from clinical phenotype to molecular mechanism

VKCFD2 – vom klinischen Phänotyp zum molekularen Mechanismus
K. J. Czogalla
1   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Germany
,
M. Watzka
1   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Germany
,
J. Oldenburg
1   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Germany
2   Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Germany
› Author Affiliations
Further Information

Publication History

received: 16 June 2015

accepted in revised form: 05 January 2016

Publication Date:
30 December 2017 (online)

Summary

Vitamin K 2,3-epoxide reductase complex, subunit 1 (VKORC1) is an enzyme essential for the vitamin K cycle. VKORC1 catalyses the reduction of vitamin K 2,3-epoxide to the quinone form of vitamin K and further to vitamin K hydroquinone. The generated vitamin K hydroquinone serves as substrate for the enzyme γ-glutamyl-carboxylase which modifies all vitamin K-dependent proteins, allowing them to bind calcium ions necessary for physiological activity. Vitamin K-dependent proteins include the coagulation factors FII, FVII, FIX, FX, and proteins C, S und Z. Insufficient VKORC1 enzyme activity results in deficiency of the vitamin K-dependent clotting factors leading to haemorrhagic disorders. This phenotype is known as vitamin K clotting factor deficiency type 2 (VKCFD2). Worldwide, only four families of independent origin have been reported with this rare bleeding disorder. Affected family members carry the mutation VKORC1:p.Arg98Trp in homozygous form, the only mutation found so far to be associated with VKCFD2. Now, ten years after the identification of the VKORC1 gene, the molecular pathomechanism of VKCFD2 has been clarified. The Arg98Trp mutation disrupts an ER retention motif of VKORC1 leading to mislocalisation of the protein to outside the endoplasmatic reticulum. In this review, we summarize the clinical data, diagnosis, therapy and molecular patho -mechanism of VKCFD2.

Zusammenfassung

Die Vitamin-K-2,3-Epoxid-Reduktase, Untereinheit 1 (VKORC1) ist ein Enzym, welches essenziell für den Vitamin-K-Zyklus ist. Sie katalysiert die Reduktion von Vitamin-K-2,3-Epoxid zum Vitamin-K-Chinon und weiter zum Vitamin-K-Hydrochinon. Das Vitamin-K-Hydrochinon dient der γ-Glutamyl-Carboxylase als Substrat für die Modifizierung VitaminK-abhängiger Proteine. Dadurch können diese Kalziumionen binden und erhalten somit ihre physiologische Aktivität. Zu den VitaminK-abhängigen Gerinnungsproteinen zählen FII, FVII, FIX, FX sowie die Proteine C, S und Z. Eine insuffiziente VKORC1 führt unter anderem zu einem Mangel aller Vitamin-K-abhängiger Gerinnungsfaktoren und somit zu einer Blutungsneigung. Dieser Phänotyp wird als VKCFD2 (vitamin K clotting factor deficiency type 2) bezeichnet. Weltweit wurden bisher vier Familien unabhängigen Ursprungs mit dieser seltenen Gerinnungsstörung diagnostiziert. Die betroffenen Familienmitglieder zeigen die Mutation VKORC: p.Arg98Trp in homo zygoter Ausprägung, welche die einzig bekannte Mutation ist, die zu einer VKCFD2 führt. Zehn Jahre nach der Identifikation des VKORC1-Gens wurde jetzt der molekulare Pathomechanismus der VKCFD2 aufgeklärt. Die Arg98Trp-Mutation führt zur Zerstörung eines ER-Retentionsmotivs der VKORC1 und damit zur Fehllokalisation des Proteins außerhalb des endoplasmatischen Retikulums. Diese Übersichtsarbeit fasst die klinischen Symptome, die Diagnostik, Behandlung und den molekularen Pathomechanismus der VKCFD2 zusammen.

 
  • References

  • 1 Dam H. The antihaemorrhagic vitamin of the chick. Biochem J 1935; 29: 1273-1285.
  • 2 Doisy EA, Binkley SB, Thayer SA, McKee RW. VITAMIN K. Science 1940; 91: 58-62.
  • 3 Lehmann J. Vitamin K as a prophylactic in 13.000 infants. Lancet 1944; 243: 493-494.
  • 4 Waddell WW, Guerry D. The role of vitamin K in the prevention and treatment of hemorrhage in the newborn infant. Part I J Ped 1939; 15: 802-811.
  • 5 Dam H, Schønheyder F, Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J 1936; 30: 1075-1079.
  • 6 Quick AJ. The coagulation defect in sweet clover disease and in the hemorrhagic chick disease is of dietary origin. A consideration of the source of prothrombin. Am J Pysiol 1937; 118: 260-271.
  • 7 Campbell HA, Roberts WL, Smith WK, Link KP. Studies on the hemorrhagic sweet clover disease. I The preparation of hemorrhafic concentrates. J Biol Chem 1940; 136: 47-55.
  • 8 Stahmann MA, Huebner CF, Link KP. Studies on the hemorrhagic sweet clover disease. V. Identification and synthesis of the hemorrhagic agent. J Biol Chem 1941; 138: 513-527.
  • 9 Link KP. The discovery of dicumarol and its sequels. Circulation 1959; 19: 97-107.
  • 10 Suttie JW. Vitamin K in Health and Disease. Boca Raton, FL: CRC Press; 2009
  • 11 Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood 1999; 93: 1798-1808.
  • 12 Stenflo J, Suttie JW. Vitamin K-dependent formation of gamma-carboxyglutamic acid. Annu Rev Biochem 1977; 46: 157-172.
  • 13 Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505-518.
  • 14 Oldenburg J, Watzka M, Rost S, Muller CR. VKORC1: molecular target of coumarins. J Thromb Haemost 2007; 5 (01) 1-6.
  • 15 Wallin R, Martin LF. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. J Clin Invest 1985; 76: 1879-1884.
  • 16 Bell RG, Matschiner JT. Vitamin K activity of phylloquinone oxide. Arch Biochem Biophys 1970; 141: 473-476.
  • 17 Bell RG, Matschiner JT. Warfarin and the inhibition of vitamin K activity by an oxide metabolite. Nature 1972; 237: 32-33.
  • 18 Bell RG, Sadowski JA, Matschiner JT. Mechanism of action of warfarin. Warfarin and metabolism of vitamin K 1. Biochemistry 1972; 11: 1959-1961.
  • 19 Oldenburg J, Marinova M, Müller-Reible C, Watzka M. The vitamin K cycle. Vitam Horm 2008; 78: 35-62.
  • 20 Rost S, Fregin A, Ivaskevicius V. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537-541.
  • 21 Li T, Chang CY, Jin DY. et al. Identification of the gene for vitamin K epoxide reductase. Nature 2004; 427: 541-544.
  • 22 Oldenburg J, von Brederlow B, Fregin A. et al. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex. Thromb Haemost 2000; 84: 937-941.
  • 23 Brenner B, Kuperman AA, Watzka M, Oldenburg J. Vitamin K-dependent coagulation factors deficiency. Semin Thromb Hemost 2009; 35: 439-446.
  • 24 Fregin A, Rost S, Wolz W. et al. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromo-some 16. Blood 2002; 100: 3229-3232.
  • 25 Kohn MH, Pelz HJ. A gene-anchored map position of the rat warfarin-resistance locus, Rw, and its orthologs in mice and humans. Blood 2000; 96: 1996-1998.
  • 26 Oldenburg J, Bevans CG, Muller CR, Watzka M. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Antioxid Redox Signal 2006; 8: 347-353.
  • 27 Berkner KL, Runge KW. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J Thromb Hae-most 2004; 2: 2118-2132.
  • 28 Nelsestuen GL, Shah AM, Harvey SB. Vitamin K-dependent proteins. Vitam Horm 2000; 58: 355-389.
  • 29 Stanley TB, Jin DY, Lin PJ, Stafford DW. The propeptides of the vitamin K-dependent proteins possess different affinities for the vitamin K-dependent carboxylase. J Biol Chem 1999; 274: 16940-16944.
  • 30 Ferland G. The discovery of vitamin K and its clinical applications. Ann Nutr Metab 2012; 61: 213-218.
  • 31 Price PA, Urist MR, Otawara Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Comm 1983; 117: 765-771.
  • 32 Hauschka PV, Lian JB, Gallop PM. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci USA 1975; 72: 3925-3929.
  • 33 Manfioletti G, Brancolini C, Avanzi G, Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol 1993; 13: 4976-4985.
  • 34 Kulman JD, Harris JE, Haldeman BA, Davie EW. Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc Natl Acad Sci USA 1997; 94: 9058-9062.
  • 35 Spohn G, Kleinridders A, Wunderlich FT. et al. VKORC1 deficiency in mice causes early postnatal lethality due to severe bleeding. Thromb Haemost 2009; 101: 1044-1050.
  • 36 Zhu A, Sun H, Raymond Jr RM. et al. Fatal hemorrhage in mice lacking gamma-glutamyl carboxylase. Blood 2007; 109: 5270-5275.
  • 37 Pauli RM, Lian JB, Mosher DF, Suttie JW. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the pheno-type of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. Am J Hum Genet 1987; 41: 566-583.
  • 38 Marchetti G, Caruso P, Lunghi B. et al. Vitamin K-induced modification of coagulation phenotype in VKORC1 homozygous deficiency. J Thromb Haemost 2008; 6: 797-803.
  • 39 Chung KS, Bezeaud A, Goldsmith JC. et al. Congenital deficiency of blood clotting factors II, VII, IX, and X. Blood 1979; 53: 776-787.
  • 40 Watzka M, Geisen C, Scheer M. et al. Bleeding and non-bleeding phenotypes in patients with GGCX gene mutations. Thromb Res 2014; 134: 856-865.
  • 41 Li Q, Grange DK, Armstrong NL. et al. Mutations in the GGCX and ABCC6 genes in a family with pseudoxanthoma elasticum-like phenotypes. J Invest Dermatol 2009; 129: 553-563.
  • 42 Vanakker OM, Martin L, Gheduzzi D. et al. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. J Invest Dermatol 2007; 127: 581-587.
  • 43 Brenner B, Sanchez-Vega B, Wu SM. et al. A mis-sense mutation in gamma-glutamyl carboxylase gene causes combined deficiency of all vitamin K-dependent blood coagulation factors. Blood 1998; 92: 4554-4559.
  • 44 Darghouth D, Hallgren KW, Shtofman RL. et al. Compound heterozygosity of novel missense mutations in the gamma-glutamylcarboxylase gene causes hereditary combined vitamin K-dependent coagulation factor deficiency. Blood 2006; 108: 1925-1931.
  • 45 Darghouth D, Hallgren KW, Odile I. et al. Compound heterozygosity of a W493C substitution and R704/premature stop codon within the gamma-glutamyl carboxylase in combined vitamin K-dependent coagulation factor deficiency in a french family. Blood 2009; 114: 1302.
  • 46 Li Q, Schurgers LJ, Smith AC. et al. Co-existent pseudoxanthoma elasticum and vitamin K-dependent coagulation factor deficiency: compound heterozygosity for mutations in the GGCX gene. Am J Pathol 2009; 174: 534-540.
  • 47 Lunghi B, Redaelli R, Caimi TM. et al. Novel phenotype and gamma-glutamyl carboxylase mutations in combined deficiency of vitamin K-dependent coagulation factors. Haemophilia 2011; 17: 822-824.
  • 48 Mousallem M, Spronk HM, Sacy R. et al. Congenital combined deficiencies of all vitamin K-dependent coagulation factors. Thromb Haemost 2001; 86: 1334-1336.
  • 49 Rost S, Fregin A, Koch D. et al. Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004; 126: 546-549.
  • 50 Spronk HM, Farah RA, Buchanan GR. et al. Novel mutation in the gamma-glutamyl carboxylase gene resulting in congenital combined deficiency of all vitamin K-dependent blood coagulation factors. Blood 2000; 96: 3650-3652.
  • 51 Titapiwatanakun R, Rodriguez V, Middha S. et al. Novel splice site mutations in the gamma glutamyl carboxylase gene in a child with congenital combined deficiency of the vitamin K-dependent coagulation factors (VKCFD). Pediatr Blood Cancer 2009; 53: 92-95.
  • 52 Gundberg CM, Lian JB, Gallop PM. Measurements of gamma-carboxyglutamate and circulating osteocalcin in normal children and adults. Clin Chim Acta 1983; 128: 1-8.
  • 53 Shah DV, Tews JK, Harper AE, Suttie JW. Metabolism and transport of gamma-carboxyglutamic acid. Biochim Biophys Acta 1978; 539: 209-217.
  • 54 Delmas PD, Tracy RP, Riggs BL, Mann KG. Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif Tissue Int 1984; 36: 308-316.
  • 55 Watzka M, Geisen C, Bevans CG. et al. Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. J Thromb Hae-most 2011; 9: 109-118.
  • 56 Czogalla KJ, Biswas A, Wendeln AC. et al. Human VKORC1 mutations cause variable degrees of 4-hydroxycoumarin resistance and affect putative warfarin binding interfaces. Blood 2013; 122: 2743-2750.
  • 57 Fregin A, Czogalla KJ, Gansler J. et al. A new cell culture-based assay quantifies vitamin K 2,3-epoxide reductase complex subunit 1 function and reveals warfarin resistance phenotypes not shown by the dithiothreitol-driven VKOR assay. J Thromb Haemost 2013; 11: 872-880.
  • 58 Tie JK, Jin DY, Straight DL, Stafford DW. Functional study of the vitamin K cycle in mammalian cells. Blood 2011; 117: 2967-2974.
  • 59 Haque JA, McDonald MG, Kulman JD, Rettie AE. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites. Blood 2014; 123: 582-589.
  • 60 Czogalla KJ, Biswas A, Rost S. et al. The Arg98Trp mutation in human VKORC1 causing VKCFD2 disrupts a di-Arginine-based ER retention motif. Blood 2014; 124: 1354-1362.
  • 61 Li W, Schulman S, Dutton RJ. et al. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 2010; 463: 507-512.
  • 62 Schulman S, Wang B, Li W, Rapoport TA. Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners. Proc Natl Acad Sci USA 2010; 107: 15027-15032.
  • 63 Michelsen K, Yuan H, Schwappach B. Hide and run. Arginine-based endoplasmic-reticulum sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep 2005; 6: 717-722.
  • 64 Van Horn WD. VKORC1 ER mislocalization causes rare disease. Blood 2014; 124: 1215-1216.