Thromb Haemost 1999; 82(02): 858-864
DOI: 10.1055/s-0037-1615923
Research Article
Schattauer GmbH

Hemostatic Factors and Inflammatory Disease

Jay L. Degen
1   Division of Developmental Biology, Children’s Hospital Research Foundation, Cincinnati, OH, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2017 (online)

Introduction

Vascular integrity is preserved by a sophisticated system of circulating and cell-associated hemostatic factors that control local thrombin generation, platelet deposition, and the conversion of soluble fibrinogen to an insoluble fibrin matrix.1,2 However, there is considerable evidence that hemostatic factors play both a wider physiological role than simply controlling blood loss, and a wider pathological role than simply triggering inopportune thrombotic events, such as myocardial infarction and stroke. In tissue repair, a crucial physiological process, fibrin(ogen) is thought to provide a critical provisional matrix on which cells can proliferate, organize, and carry out specialized functions. A variety of cell types specifically bind to and migrate on fibrin(ogen) matrices. These include endothelial cells, macrophages, neutrophils, smooth muscle cells, fibroblasts, and keratinocytes.3-8 Direct binding to fibrin(ogen) through both integrin [e.g., αvβ3, α1β5, αMβ2 (CD11b/CD18, Mac-1)] and non-integrin receptors (e.g., intercellular adhesion molecule (ICAM-1)) appears to contribute to these cell-fibrin interactions.8-11 Fibrin(ogen) degradation products have also been reported to have an impressive array of biological activities, including mitogenic, angiogenic, chemotactic, and immunosuppressive activities.12-14 There are now substantial data indicating that fibrin(ogen) may plays an important role in the inflammatory response15,16 and that it may, in fact, direct leukocyte transendothelial cell migration.11 Similarly, through several G-protein coupled protease-activated receptors on fibroblasts, endothelial cells, leukocytes, smooth muscle cells, and other cell types, thrombin is thought to play an important role in inflammatory and fibroproliferative responses.17 Fibrinolytic factors, such as plasmin(ogen), also appear to be important modulators of inflammation.18 Finally, host fibrinogen, prothrombin, plasminogen, plasminogen activator, and other hemostatic factors appear to be crucial to the pathogenesis and virulence of many bacterial species.19-21 Unfortunately, despite a myriad of provocative observations made using in vitro systems, there is little direct in vivo evidence supporting an important role of fibrin(ogen) or other hemostatic factors in either the inflammatory response or disease progression. Direct and definitive analyses have been hampered by the lack of an experimental means to specifically manipulate the level or structure of selected hemostatic factors in vivo. Fortunately, this experimental roadblock has been effectively removed by the development of gene-targeting and gene transfer technologies in mice (see below).

 
  • References

  • 1 Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991; 30: 10363-10370.
  • 2 Lind SE. The hemostatic system. In: Handin RI, Stossel TP, Lux SE. eds. Blood: Principles and Practice of Hematology. J. B. Lippincott Company; Philadelphia: 1995: 949-972.
  • 3 Dejana E, Languino LR, Polentarutti N, Balconi G, Ryckewaert JJ, Larrieu MJ, Donati MB, Mantovani A, Marguerie G. Interaction between fibrinogen and cultured endothelial cells: induction of migration and specific binding. J Clin Invest 1985; 75: 11-18.
  • 4 Altieri DC, Mannucci PM, Capitanio AM. Binding of fibrinogen to human monocytes. J Clin Invest 1986; 78: 968-976.
  • 5 Naito M, Funaki C, Hayashi T, Yamada K, Asai K, Yoshimine N, Kuzuya F. Substrate-bound fibrinogen, fibrin and other cell attachment-promoting proteins as a scaffold for cultured vascular smooth muscle cells. Atherosclerosis 1992; 96: 227-234.
  • 6 Donaldson DJ, Mahan JT, Amrani DL, Farrell DH, Sobel JH. Further studies on the interaction of migrating keratinocytes with fibrinogen. Cell Adhes Commun 1994; 2: 299-308.
  • 7 Brown LF, Lanir N, McDonagh J, Tognazzi K, Dvorak AM, Dvorak HF. Fibroblast migration in fibrin gel matrices. Am J Pathol 1993; 142: 273-283.
  • 8 Ugarova TP, Solovjov DA, Zhang L, Loukinov DI, Yee VC, Medved LV, Plow EF. Identification of a novel recognition sequence for integrin αMβ2 within the gamma-chain of fibrinogen. J Biol Chem 1998; 273: 22519-22527.
  • 9 Katagiri Y, Hiroyama T, Akamatsu N, Suzuki H, Yamazaki H, Tanoue K. Involvement of αVβ3 integrin in mediating fibrin gel retraction. J Biol Chem 1995; 270: 1785-1790.
  • 10 Suehiro K, Gailit J, Plow EF. Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J Biol Chem 1997; 272: 5360-5366.
  • 11 Languino LR, Duperray A, Joganic KJ, Fornaro M, Thornton GB, Altieri DC. Regulation of leukocyte-endothelial interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci USA 1995; 92: 1505-1509.
  • 12 Skogen WF, Senoir RM, Griffin GL, Wilner GD. Fibrinogenderived peptide Bβ1-42 is a multidomained neutrophil chemoat-tractant. Blood 1988; 71: 1475-1479.
  • 13 Thompson WD, Smith EB, Stirk CM, Marshall FI, Stout AJ, Kocchar A. Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J Pathol 1992; 168: 47-53.
  • 14 Sporn LA, Bunce LA, Francis CW. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage. Blood 1995; 86: 1802-1810.
  • 15 Tang L, Eaton JW. Fibrin(ogen) mediates acute inflammation reponses to biomaterials. J Exp Med 1993; 178: 2147-2156.
  • 16 Tang L, Ugarova TP, Plow EF, Eaton JW. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 1996; 97: 1329-1334.
  • 17 Coughlin SR. Sol Sherry lecture in thrombosis: how thrombin ‘talks’ to cells: molecular mechanisms and roles in vivo. Arterioscler Thromb Vasc Biol 1998; 18: 514-518.
  • 18 Ploplis V, French EL, Carmeliet P, Collen D, Plow EF. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 1998; 91: 2005-2009.
  • 19 Boyle MD, Lottenberg R. Plasminogen activation by invasive human pathogens. Thromb Haemost 1997; 77: 1-10.
  • 20 Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD. A surface protease and the invasive character of plague. Science 1992; 258: 1004-1007.
  • 21 Moreillon P, Entenza JM, Francioli P, McDevitt D, Foster TJ, Francois P, Vaudaux P. Role of staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 1995; 63: 4738-4743.
  • 22 Connolly AJ, Ishihara H, Kahn ML, Farese RV, Coughlin SR. Role of the thrombin receptor in development and evidence for a second receptor. Nature 1996; 381: 516-519.
  • 23 Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature 1998; 394: 690-694.
  • 24 Bugge TH, Xiao Q, Kombrinck KW, Flick MJ, Holmbäck K, Danton MJ, Colbert MC, Witte DP, Fujikawa K, Davie EW, Degen JL. Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci USA 1996; 93: 6258-6263.
  • 25 Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze GJ. Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 1996; 88: 1583-1587.
  • 26 Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Muller M, Risau W, Edgington T, Collen D. Role of tissue factor in embryonic blood vessel development. Nature 1996; 383: 73-75.
  • 27 Rosen ED, Chan JC, Idusogie E, Clotman F, Vlasuk G, Luther T, Jalbert LR, Albrecht S, Zhong L, Lissens A, Schoonjans L, Moons L, Collen D, Castellino FJ, Carmeliet P. Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 1997; 390: 290-294.
  • 28 Rosen ED, Liang Z, Cooper A, Dewerchin M, Carmeliet P, Collen D, Castellino FJ. Generation and characterization of factor X-deficient mice. Blood 1998; 92: 473A.
  • 29 Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 9524-9529.
  • 30 Wang L, Zoppe M, Hackeng TM, Griffin JH, Lee K-F, Verma IM. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci USA 1997; 94: 11563-11566.
  • 31 Bi L, Sarkar R, Naas T, Lawler AM, Pain J, Shumaker SL, Bedian V, Kazazian HH. Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies. Blood 1996; 88: 3446-3450.
  • 32 Gailani D, Lasky NM, Broze GJ. A murine model of factor XI deficiency. Blood Coagul Fibrinolysis 1997; 8: 134-144.
  • 33 Cui J, O’Shea KS, Purkayastha A, Saunders TL, Ginsburg D. Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 1996; 384: 66-68.
  • 34 Sun WY, Witte DP, Degen JL, Colbert MC, Burkart MC, Holmbäck K, Xiao Q, Bugge TH, Degen SJ. Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci USA 1998; 95: 7597-7602.
  • 35 Xue J, Wu Q, Westfield LA, Tuley EA, Lu D, Zhang Q, Shim K, Zheng X, Sadler JE. Incomplete embryonic lethality and fatal neonatal hemorrhage caused by prothrombin deficiency in mice. Proc Natl Acad Sci USA 1998; 95: 7603-7607.
  • 36 Suh TT, Holmbäck K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter SS, Degen JL. Resolution of spontaneous bleeding but failure of pregnancy in fibrinogen-deficient mice. Genes Dev 1995; 9: 2020-2033.
  • 37 Holmbäck K, Danton MJS, Suh TT, Daugherty CC, Degen JL. Impaired platelet aggregation and sustained bleeding in mice lacking the fibrinogen motif bound by integrin αIIβbβ3 . EMBO J 1996; 15: 5760-5771.
  • 38 Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci USA 1995; 92: 850-854.
  • 39 Jalbert LR, Rosen ED, Moons L, Chan JC, Carmeliet P, Collen D, Castellino FJ. Inactivation of the gene for anticoagulant protein C causes lethal perinatal consumptive coagulopathy in mice. J Clin Invest 1998; 102: 1481-1488.
  • 40 Huang ZF, Higuchi D, Lasky N, Broze GJ. Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood 1997; 90: 944-951.
  • 41 Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in Gαq-deficient mice. Nature 1997; 389: 183-186.
  • 42 Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Culleré M, Ross FP, Coller BS, Teitelbaum S, Hynes RO. β3-integrin–deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103: 229-238.
  • 43 Subramaniam M, Frenette PS, Saffaripour S, Johnson RC, Hynes RO, Wagner DD. Defects in hemostasis in P-selectin-deficient mice. Blood 1996; 87: 1238-1242.
  • 44 Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen JL, Bronson R, DeVos R, van den Oord JJ, Collen D, Mulligan RC. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419-424.
  • 45 Carmeliet P, Stassen L, Schoonjans L, Ream B, van den Oord JJ, De Mol M, Mulligan RC, Collen D. Plasminogen activator inhibitor-1 gene deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J Clin Invest 1994; 92: 2756-2760.
  • 46 Bugge TH, Flick MJ, Daugherty CC, Degen JL. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 1995; 9: 794-807.
  • 47 Ploplis VA, Carmeliet P, Vazirzadeh S, Van Vlaenderen I, Moons L, Plow EF, Collen D. Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 1995; 92: 2585-2593.
  • 48 Bugge TH, Suh TT, Flick MJ, Daugherty CC, Rømer J, Solberg H, Ellis V, Danø K, Degen JL. The receptor for urokinase-type plasminogen activator is not essential for mouse development or fertility. J Biol Chem 1995; 270: 16886-16894.
  • 49 Dewerchin M, Nuffelen AV, Wallays G, Bouche A, Moons L, Carmeliet P, Mulligan RC, Collen D. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest 1996; 97: 870-878.
  • 50 Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992; 326: 242-250.
  • 51 Bini A, Fenoglio JJ, Mesa-Tejada R, Kudryk B, Kaplan KL. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies. Arteriosclerosis 1989; 9: 109-121.
  • 52 Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989; 86: 2839-2843.
  • 53 Schneiderman J, Sawdey MS, Keeton MR, Bordin GM, Bernstein EF, Dilley RB, Loskutoff DJ. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci USA 1992; 89: 6998-7002.
  • 54 Lupu F, Heim DA, Bachmann F, Hurni M, Kakkar VV, Kruithof EK. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1995; 15: 1444-1455.
  • 55 Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 1993; 118: 956-963.
  • 56 Naski MC, Shafer JA. A kinetic model for the α-thrombin-catalyzed conversion of plasma levels of fibrinogen to fibrin in the presence of antithrombin III. J Biol Chem 1991; 266: 13003-13010.
  • 57 Falk E, Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 1995; 75: 3B-11B.
  • 58 Stormorken H, Sakariassen KS. Hemostatic risk factors in arterial thrombosis and atherosclerosis: the thrombin-fibrin and platelet-vWF axis. Thromb Res 1997; 88: 1-25.
  • 59 Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE, Altieri DC. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 1993; 73: 1423-1434.
  • 60 Naito M, Nomura H, Iguchi A. Migration of cultured vascular smooth muscle cells into non-crosslinked fibrin gels. Thromb Res 1996; 84: 129-136.
  • 61 Stirk CM, Kochhar A, Smith EB, Thompson WD. Presence of growth-stimulating fibrin degradation products containing fragment E in human atherosclerotic plaques. Atherosclerosis 1993; 103: 159-169.
  • 62 Thompson WD, Smith EB, Stirk CM, Marshall FI, Stout AJ, Kocchar A. Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J Pathol 1992; 168: 47-53.
  • 63 Lawn RM, Wade DP, Hammer RE, Chiesa G, Verstuyft JG, Rubin EM. Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 1992; 360: 670-672.
  • 64 Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growth factor-? is inhibited in transgenic apolipoprotein(a) mice. Nature 1994; 370: 460-462.
  • 65 Xiao Q, Danton MJS, Witte DP, Kowala MC, Valentine MT, Bugge TH, Degen JL. Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis. Proc Natl Acad Sci USA 1997; 94: 10335-10340.
  • 66 Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997; 17: 439-444.
  • 67 Moons L, Shi C, Ploplis V, Plow E, Haber E, Collen D, Carmeliet P. Reduced transplant arteriosclerosis in plasminogen-deficient mice. J Clin Invest 1998; 102: 1788-1797.
  • 68 Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJS, Degen JL. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 1996; 87: 709-719.
  • 69 Lou XJ, Boonmark NW, Horrigan FT, Degen JL, Lawn RM. Fibrinogen deficiency reduces vascular accumulation of apolipoprotein(a) and development of atherosclerosis in apolipoprotein(a) transgenic mice. Proc Natl Acad Sci USA 1998; 95: 12591-12595.
  • 70 Xiao Q, Danton MJS, Witte DP, Kowala MC, Valentine MT, Degen JL. Fibrinogen deficiency is compatible with the development of atherosclerosis in mice. J Clin Invest 1998; 101: 1184-1194.
  • 71 Busso N, Peclat V, van Ness K, Kolodziesczyk E, Degen JL, Bugge TH, So A. Excerbation of antigen-induced arthritis in urokinase-deficient mice. J Clin Invest 1998; 102: 41-50.
  • 72 Kitching AR, Holdsworth SR, Ploplis VA, Plow EF, Collen D, Carmeliet P, Tipping PG. Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 1997; 185: 963-968.
  • 73 Thomson NM, Moran J, Simpson IJ, Peters DK. Defibrination with ancrod in nephrotoxic nephritis in rabbits. Kidney Int 1976; 10: 343-347.
  • 74 Olman MA, Mackman N, Gladson CL, Moser KM, Loskutoff DJ. Changes in procoagulant and fibrinolytic gene expression during bleomycin-induced lung injury in the mouse. J Clin Invest 1995; 96: 1621-1630.
  • 75 Olman MA, Simmons WL, Pollman DJ, Loftis AY, Bini A, Miller EJ, Fuller GM, Rivera KF. Polymerization of fibrinogen in murine bleomycin-induced lung injury. Am J Physiol 1996; 271: L519-L526.
  • 76 Tani K, Yasuoka S, Ogushi F, Asada K, Fujisawa K, Ozaki T, Sano N, Ogura T. Thrombin enhances lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 1991; 5: 34-40.
  • 77 Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D, Simon RH. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996; 97: 232-237.
  • 78 Collen D. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat. Med 1998; 4: 279-284.