Thromb Haemost 1999; 82(02): 318-325
DOI: 10.1055/s-0037-1615849
Research Article
Schattauer GmbH

Signaling Through Platelet Integrin αIIbβ3: Inside-out, Outside-in, and Sideways

Sanford J. Shattil
1   Departments of Vascular Biology and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2017 (online)

Introduction

Cell adhesion, which plays a major role in the response of tissues to injury, involves a wide variety of cells, adhesion receptors, and ligands. Prominent among the cells responding to injury are platelets, the first line of defense against hemorrhage and an early player in the overall process of wound-healing.1 Prominent among the adhesion receptors is αIIbβ3, a platelet-specific integrin essential for hemostasis by virtue of its role in mediating platelet aggregation and platelet spreading on vascular matrices. Prominent among the ligands for αIIbβ3 are the multivalent adhesive proteins, fibrinogen and von Willebrand factor (vWF), which in soluble form, mediate platelet aggregation and, in solid phase, mediate adhesive spreading.2

In addition to the adhesive functions of αIIbβ3, this integrin serves as a bidirectional conduit for biochemical and mechanical information flow across the platelet plasma membrane.3 For example, intracellular signals modulate the ligand-binding function of αIIbβ3 (inside-out signaling), and signals generated by ligation and clustering of αIIbβ3 regulate the extent of platelet aggregation and spreading (outside-in signaling). The relationships between αIIbβ3 and intracellular signaling pathways have been the subject of intense study in human platelets, model cell systems, and more recently, in genetically-modified mice. Although model cells and mouse platelets have become indispensable tools to dissect mechanisms of αIIbβ3 signaling, conclusions drawn from their use must always be validated in human platelets. Despite this caveat, a broad, but still incomplete, picture of integrin signaling in platelets is beginning to emerge. This update will highlight selected recent developments in this area and discuss potential clinical implications.

 
  • References

  • 1 Martin P. Wound healing — aiming for perfect skin regeneration. Science 1997; 276: 75-81.
  • 2 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation and flow. Cell. 1998; 94: 657-666.
  • 3 Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91: 2645-2657.
  • 4 Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng DW, Moff S, Farese Jr. RV, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature 1998; 394: 690-694.
  • 5 Jin JG, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA. 1998; 95: 8070-8074.
  • 6 Hechler B, Léon C, Vial C, Vigne P, Frelin C, Cazenave JP, Gachet C. The P2Y1 receptor is necessary for adenosine 5’-diphosphate-induced platelet aggregation. Blood 1998; 92: 152-159.
  • 7 Jandrot-Perrus M, Lagrue AH, Okuma M, Bon C. Adhesion and activation of human platelets induced by convulxin involve glyco-protein VI and integrin α2β1 . J Biol Chem. 1997; 272: 27035-27041.
  • 8 Moroi M, Jung SM, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest. 1989; 84: 1440-1445.
  • 9 Keely PJ, Parise LV. The α2βq integrin is a necessary co-receptor for collagen-induced activation of Syk and the subsequent phosphorylation of phospholipase Cγ2 in platelets. J Biol Chem. 1996; 271: 26668-26676.
  • 10 Watson SP, Gibbins J. Collagen receptor signalling in platelets: extending the role of the ITAM. Immunol Today. 1998; 19: 260-264.
  • 11 Gayle III RB, Maliszewski CR, Gimpel SD, Schoenborn MA, Caspary RG, Richards C, Brasel K, Price V, Drosopoulos JHF, Islam N, Alyonycheva TN, Broekman MJ, Marcus AJ. Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest. 1998; 101: 1851-1859.
  • 12 Nurden P, Savi P, Heilmann E, Bihour C, Herbert J-M, Maffrand J-P, Nurden A. An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets: its influence on glycoprotein IIb-IIIa complex function. J Clin Invest. 1995; 95: 1612-1622.
  • 13 Daniel JL, Dangelmaier C, Jin JG, Ashby B, Smith JB, Kunapuli SP. Molecular basis for ADP-induced platelet activation I: evidence for three distinct ADP receptors on human platelets. J Biol Chem. 1998; 273: 2024-2029.
  • 14 Jin JG, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation II: the P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem. 1998; 273: 2030-2034.
  • 15 Kim YB, Jin J, Dangelmaier C, Daniel JL, Kunapuli SP. The P2Y1 receptor plays an essential role in ADP-induced shape change and aggregation in mouse platelets. Blood 1998; 92: 27a.
  • 16 Jantzen H-M, Gousset L, Bhaskar V, Vincent D, Tai A, Reynolds EE, Conley PB. Evidence for two distinct G-protein-coupled ADP receptors mediating platelet activation. Thromb Haemost. 1999; 81: 111-117.
  • 17 Kunapuli SP, Dangelmaier C, Jin J, Kim YB, Daniel JL, Rao AK. Role of intracellular signaling events in ADP-induced platelet aggregation. Blood 1998; 92: 27a.
  • 18 Brass LF, Manning DR, Cichowski K, Abrams CS. Signaling through G proteins in platelets: to the integrins and beyond. Thromb Haemost. 1997; 78: 581-589.
  • 19 Thomas DW, Mannon RB, Mannon PJ, Latour A, Oliver JA, Hoffman M, Smithies O, Koller BH, Coffman TM. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2 . J Clin Invest. 1998; 102: 1994-2001.
  • 20 Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in Gαq-deficient mice. Nature 1997; 389: 183-186.
  • 21 Gabbeta J, Yang X, Kowalska MA, Sun L, Dhanasekaran N, Rao AK. Platelet signal transduction defect with Gα subunit dysfunction and diminished Gαq in a patient with abnormal platelet responses. Proc Natl Acad USA. 1997; 94: 8750-8755.
  • 22 Lee SB, Rao AK, Lee KH, Yang X, Bae YS, Rhee SG. Decreased expression of phospholipase C-β2 isozyme in human platelets with impaired function. Blood 1996; 88: 1684-91.
  • 23 Guinebault C, Payrastre B, Sultan C, Mauco G, Breton M, Levy-Toledano S, Plantavid M, Chap H. Tyrosine kinases and phosphoinositide metabolism in thrombin-stimulated human platelets. Biochem J. 1993; 292: 851-856.
  • 24 Moussazadeh M, Haimovich B. Protein kinase C-δ activation and tyrosine phosphorylation in platelets. FEBS Lett. 1998; 438: 225-230.
  • 25 Rittenhouse SE. Phosphoinositide 3-kinase activation and platelet function. Blood 1996; 88: 4401-4414.
  • 26 Malbon CC, Karoor V. G-protein-linked receptors as tyrosine kinase substrates: new paradigms in signal integration. Cell Signal. 1998; 10: 523-527.
  • 27 Luttrell LM, Ferguson SSG, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin FT, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ. β-arrestin-dependent formation of β2 adrenergic receptor Src protein kinase complexes. Science 1999; 283: 655-661.
  • 28 Jackson SP, Schoenwaelder SM, Yuan YP, Salem HH, Cooray P. Non-receptor protein tyrosine kinases and phosphatases in human platelets. Thromb Haemost. 1996; 76: 640-650.
  • 29 Raja S, Avraham S, Avraham H. Tyrosine phosphorylation of the novel protein-tyrosine kinase RAFTK during an early phase of platelet activation by an integrin glycoprotein IIb-IIIa-independent mechanism. J Biol Chem. 1997; 272: 10941-10947.
  • 30 Hamazaki Y, Kojima H, Mano H, Nagata Y, Todokoro K, Abe T, Nagasawa T. Tec is involved in G protein-coupled receptor and integrin-mediated signalings in human blood platelets. Oncogene. 1998; 16: 2773-2779.
  • 31 Moroi M, Jung SM. Platelet receptors for collagen. Thromb Haemost. 1997; 78: 439-444.
  • 32 Kehrel B, Wierwille S, Clemetson KJ, Anders O, Steiner M, Knight CG, Farndale RW, Okuma M, Barnes MJ. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 1998; 91: 491-499.
  • 33 Barnes MJ, Knight CG, Farndale RW. The use of collagen-based model peptides to investigate platelet-reactive sequences in collagen. Biopolymers. 1996; 40: 383-397.
  • 34 Asselin J, Gibbins JM, Achison M, Lee YH, Morton LF, Farndale RW, Barnes MJ, Watson SP. Collagen-like peptide stimulates tyrosine phosphorylation of Syk and phospholipase Cgamma2 in platelets independent of the integrin α2β1 . Blood 1997; 89: 1235-1242.
  • 35 Polgar J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TNC, Clemetson KJ. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem. 1997; 272: 13576-13583.
  • 36 Gibbins JM, Okuma M, Farndale R, Barnes M, Watson SP. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett. 1997; 413: 255-259.
  • 37 Poole A, Gibbins JM, Turner M, van Vugt MJ, van den Winkel JGJ, Saito T, Tybulewicz VLJ, Watson SP. The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J. 1997; 16: 2333-2341.
  • 38 Quek LS, Bolen J, Watson SP. A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol. 1998; 8: 1137-1140.
  • 39 Clements JL, Lee JR, Gross B, Yang B, Olson JD, Sandra A, Watson SP, Lentz SR, Koretzky GA. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J Clin Invest.. 1999 103. (in press).
  • 40 Gross BS, Lee JR, Clements JL, Turner M, Tybulewicz VL, Findell PR, Koretzky GA, Watson SP. Tyrosine phosphorylation of SLP-76 is downstream of Syk following stimulation of the collagen receptor in platelets. J Biol Chem. 1999; 274: 5963-5971.
  • 41 Gibbins JM, Briddon S, Shutes A, van Vugt MJ, van de Winkel JGJ, Saito T, Watson SP. The p85 subunit of phosphatidylinositol 3-kinase associates with the Fc receptor gamma-chain and linker for activator of T cells (LAT) in platelets stimulated by collagen and convulxin. J Biol Chem. 1998; 273: 34437-34443.
  • 42 Loftus JC, Liddington RC. Cell adhesion in vascular biology: new insights into integrin-ligand interaction. J Clin Invest. 1997; 99: 2302-2306.
  • 43 Hemler ME. Integrin associated proteins. Curr Opin Cell Biol. 1998; 10: 578-585.
  • 44 Naik UP, Patel PM, Parise LV. Identification of a novel calcium binding protein that interacts with the integrin αIIb cytoplasmic domain. J Biol Chem. 1997; 272: 4651-4654.
  • 45 Shattil SJ, O’Toole T, Eigenthaler M, Thon V, Williams M, Babior BM, Ginsberg MH. β3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin β3 subunit. J Cell Biol. 1995; 131: 807-816.
  • 46 Abrams C, Deng J, Steiner B, Shattil SJ. Determinants of specificity of a baculovirus-expressed antibody Fab fragment that binds selectively to the activated form of integrin αIIbβ3 . J Biol Chem. 1994; 269: 18781-18788.
  • 47 Kashiwagi H, Schwartz MA, Eigenthaler MA, Davis KA, Ginsberg MH, Shattil SJ. Affinity modulation of platelet integrin αIIbβ3 by β3-endonexin, a selective binding partner of the β3 integrin cytoplasmic tail. J Cell Biol. 1997; 137: 1433-1443.
  • 48 Zhang Z, Vuori K, Wang H-G, Reed JC, Ruoshlati E. Integrin activation by R-ras. Cell. 1996; 85: 61-69.
  • 49 Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA, Ginsberg MH. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP-kinase pathway. Cell. 1996; 88: 521-530.
  • 50 Kucik DF, Dustin ML, Miller JM, Brown EJ. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest. 1996; 97: 2139-2144.
  • 51 Qi W, Loh E, Vilaire G, Bennett JS. Regulation of αIIbβ3 function in human B lymphocytes. J Biol Chem. 1998; 273: 15271-5278.
  • 52 Bennett JS, Vilaire G, Cunningham M, Bednar B. The platelet cytoskeleton regulates the affinity of αIIbβ3 for fibrinogen. Blood 1998; 92: 702a.
  • 53 Fox JEB. Platelet activation: new aspects. Haemostasis. 1996; 26 (Suppl. 04) 102-131.
  • 54 Hemmings L, Barry ST, Critchley DR. Cell-matrix adhesion: structure and regulation. Biochem Soc Trans. 1995; 23: 619-626.
  • 55 Reddy KB, Gascard P, Price MG, Negrescu EV, Fox JEB. Identification of an interaction between M-band protein skelemin and β-integrin subunits. J Biol Chem. 1998; 273: 35039-35047.
  • 56 Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin αII bβ3 . J Cell Biol. 1998; 141: 1685-1695.
  • 57 Gao J, Zoller K, Ginsberg MH, Brugge JS, Shattil SJ. Regulation of the pp72 syk protein tyrosine kinase by platelet integrin αIIbβ3 . EMBO J. 1997; 16: 6414-6425.
  • 58 Clark EA, Shattil SJ, Ginsberg MH, Bolen J, Brugge JS. Regulation of the protein tyrosine kinase, pp72 syk , by platelet agonists and the integrin, αIIbβ3 . J Biol Chem. 1994; 46: 28859-28864.
  • 59 Miranti C, Leng L, Maschberger P, Brugge JS, Shattil SJ. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol. 1998; 8 (24) 1289-1299.
  • 60 Hartwig JH, Kung S, Kovacsovics T, Janmey PA, Cantley LC, Stossel TP, Toker A. D3 phosphoinositides and outside-in integrin signaling by glycoprotein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by phorbol 12-myristate 13-acetate. J Biol Chem. 1996; 271: 32986-32993.
  • 61 Yuan YP, Dopheide SM, Ivanidis C, Salem HH, Jackson SP. Calpain regulation of cytoskeletal signaling complexes in von Willebrand factor-stimulated platelets: distinct roles for glycoprotein Ib-V-IX and glycoprotein IIb-IIIa (integrin αIIbβ3) in von Willebrand factor-induced signal transduction. J Biol Chem. 1997; 272: 21847-21854.
  • 62 Cichowski K, Brugge JS, Brass LF. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the proto-oncogene product, p95vav, in platelets. J Biol Chem. 1996; 271: 7544-7550.
  • 63 Burridge K, Chrzanowska-Wodnicka M, Zhong CL. Focal adhesion assembly. Trends Cell Biol. 1997; 7: 342-347.
  • 64 Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509-514.
  • 65 Leng L, Kashiwagi H, Ren X-D, Shattil SJ. RhoA and the function of platelet integrin αIIbβ3 . Blood 1998; 91: 4206-4215.
  • 66 Chen Y-P, Djaffar I, Pidard D, Steiner B, Cieutat A-M, Caen JP, Rosa J-P. Ser-752 → Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad USA. 1992; 89: 10169-10173.
  • 67 Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J Clin Invest. 1997; 100: 2393-2403.
  • 68 Tomiyama Y, Shiraga M, Kinoshita S, Ambo H, Kurata Y, Matsuzawa Y, Kunicki TJ. A Glanzmann thrombasthenia-like phenotype caused by a defect in inside-out signaling through the integrin αIIbβ3 . Thromb Haemost. 1998; 80: 735-742.
  • 69 Law DA, DeGuzman F, Ministri K, Phillips DR. Demonstration of a role for the β3 cytoplasmic tyrosine residues in platelet function using mice expressing a mutant (Y747F, Y759F) β3. Blood 1998; 92: 701a.
  • 70 Law DA, Nannizzi-Alaimo L, Ministri K, Hughes P, Forsyth J, Turner M, Shattil SJ, Ginsberg MH, Tybulewicz V, Phillips DR. Genetic and pharmacological analyses of Syk function in αIIbβ3 signaling in platelets. Blood. In press.
  • 71 Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ. Hemostatic, inflammatory and fibroblast responses are blunted in mice lacking gelsolin. Cell. 1995; 81: 41-51.
  • 72 Ambo H, Kamata T, Handa M, Taki M, Kuwajima M, Kawai Y, Oda A, Murata M, Takada Y, Watanabe K, Ikeda Y. Three novel integrin β3 subunit missense mutations (H280P, C560F, and G579S) in thrombasthenia, including one (H280P) prevalent in Japanese patients. Biochem Biophys Res Commun. 1998; 251: 763-768.
  • 73 Liu C-Y, Sun Q-H, Wang R, Paddock CM, Newman PJ. Further examination of the role of GPIIIa long-range CYS5-CYS435 disulfide bind in conformational changes of GP IIb-IIIa: substitution of cysteine 5 with alanine results in the production of a constitutively active GPIIb-IIIa integrin complex. Blood 1998; 92: 344a.
  • 74 Kashiwagi H, Tomiyama Y, Tadokoro S, Honda S, Shiraga M, Kiyoi T, Kurata Y, Matsuzawa Y, Shattil SJ. A mutation in the extracellular cysteine-rich repeat region of the β3 subunit activates integrins αIIbβ3 and αVβ3 . Blood. In press.
  • 75 Weiss EJ, Bray PF, Tayback M, Schulman SP, Kickler TS, Becker LC, Weiss JL, Gerstenblith G, Goldschmidt-Clermont PJ. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med. 1996; 334: 1090-1094.
  • 76 Bray PF. Integrin polymorphisms as risk factors for thrombosis. Thromb Haemost.. In press.
  • 77 Lefkovits J, Plow EF, Topol EJ. Mechanisms of disease: platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med. 1995; 332: 1553-1559.
  • 78 Coller BS. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J Clin Invest. 1997; 99: 1467-1471.
  • 79 Phillips DR, Law D, Scarborough RM. Glycoprotein IIb-IIIa in platelet aggregation: an emerging target for the prevention of acute coronary thrombotic occlusions. Arch Pathol Lab Med. 1998; 122: 811-812.
  • 80 Sharis PJ, Cannon CP, Loscalzo J. The antiplatelet effects of ticlopidine and clopidogrel. Ann Intern Med. 1998; 129: 394-405.
  • 81 Hechler B, Eckly A, Ohlmann P, Cazenave JP, Gachet C. The P2Y1 receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not the target of the drug clopidogrel. Br J Haematol. 1998; 103: 858-66.
  • 82 Stromblad S, Cheresh DA. Cell adhesion and angiogenesis. Trends Cell Biol. 1996; 6: 462-468.
  • 83 Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med. 1998; 4: 408-414.
  • 84 Byzova TV, Rabbani R, D’Souza S, Plow EF. Role of integrin αVβ3 in vascular biology. Thromb Haemost. 1998; 80: 726-734.
  • 85 Stupack DG, Shen C, Wilkins JA. Induction of αvβ3 integrin-mediated attachment to extracellular matrix in β1 integrin (CD29)-negative B cell lines. Exp Cell Res. 1992; 203: 443-448.
  • 86 Bennett JS, Chan C, Vilaire G, Mousa SA, DeGrado WF. Agonist-activated αVβ3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem. 1997; 272: 8137-8140.
  • 87 Blystone SD, Williams MP, Slater SE, Brown EJ. Requirement of integrin β3 tyrosine 747 for β3 tyrosine phosphorylation and regulation of αvβ3 avidity. J Biol Chem. 1997; 272: 28757-28761.
  • 88 Sadhu C, Masinovsky B, Staunton DE. Differential regulation of chemoattractant-stimulated β2, β3, and β7 integrin activity. J Immunol. 1998; 160: 5622-8.
  • 89 Byzova TV, Plow EF. Activation of αvβ3 on vascular cells controls recognition of prothrombin. J Cell Biol. 1998; 143: 2081-2092.
  • 90 Pampori N, Hato T, Stupack D, Aidoudi S, Cheresh D, Nemerow G, Shattil S. Adenovirus penton base is an activation-dependent ligand for integrin αVβ3 . J Biol Chem.. (in press).