Thromb Haemost 1999; 82(06): 1736-1742
DOI: 10.1055/s-0037-1614907
Rapid Communication
Schattauer GmbH

A Sudden Increase in Plasma Epinephrine Levels Transiently Enhances Platelet Deposition on Severely Damaged Arterial Wall

Studies in a Porcine Model
Lina Badimon
1   From the Cardiovascular Research Center, IIBB/CSIC-Institut de Recerca del Hospital Santa Creu i Sant Pau, Barcelona, Spain
,
José Martínez-González
1   From the Cardiovascular Research Center, IIBB/CSIC-Institut de Recerca del Hospital Santa Creu i Sant Pau, Barcelona, Spain
,
Teresita Royo
1   From the Cardiovascular Research Center, IIBB/CSIC-Institut de Recerca del Hospital Santa Creu i Sant Pau, Barcelona, Spain
,
Riitta Lassila
2   Wihuri Research Institute, Helsinki, Finland
,
José Juan Badimon
3   Cardiovascular Institute, Mount Sinai Medical Center, New York, USA
› Author Affiliations
This work has been possible thanks to grant FIS 98/0715, FIS 98/0641 and funds provided by FIC-Catalana Occidente.
Further Information

Publication History

Received 17 February 1999

Accepted after revision 21 July 1999

Publication Date:
10 December 2017 (online)

Summary

Epidemiologic evidence has shown that sympathoadrenal activation plays a triggering role in the onset of acute coronary syndromes. However, its mechanism is not yet clearly understood. The aim of this study was to assess the effect of a sudden increase in epinephrine on platelet deposition on severely damaged vessel wall at shear rate conditions modelling stenotic vessels in the porcine model. The selected epinephrine concentrations (0.5 μmol/l-1 mmol/l) alone or in combination with collagen or ADP did not affect platelet aggregation in vitro either in whole blood or in PRP, although porcine platelets express α2-adrenergic receptors as assessed by PCR. In vitro and ex vivo perfusion experiments were performed using the Badimon chamber at high shear rate conditions (1690 s-1). In vitro, epinephrine (130 nmol/l) increased platelet deposition on severely damaged vessel wall (exposing tunica media; ≈1.6-fold, p <0.05) or immobilized collagen (2.2-fold, p <0.01). Ex vivo perfusion experiments were performed from animals that received intravenous epinephrine infusion for one hour at a low (0.3 μg/kg/min; ≈17 nmol/l in plasma, at 20 min of the infusion) and a high dose (1.0 μg/kg/min; ≈106 nmol/l in plasma, at 20 min of the infusion). Only the low dose temporarily increased platelet deposition on severely damaged vessel wall during the first 30 min of infusion [2.4-fold (p <0.05) and 4.2-fold (p <0.01) at 10 and 30 min of the infusion respectively] declining afterwards. Thus, in flow conditions typical of atherosclerotic arteries, a sudden physiological release of epinephrine can temporarily enhance platelet deposition on severely damaged vessel wall while an extensive exposure leads to refractoriness.

 
  • References

  • 1 Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E. and the MILIS Study Group. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 1985; 313: 1315-22.
  • 2 Benhorin J, Banai S, Moriel M, Gavish A, Keren A, Stern S, Tzivoni D. Circadian variations in ischemic threshold and their relation to the occurrence of ischemic episodes. Circulation 1993; 87: 808-14.
  • 3 Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 1987; 316: 1514-8.
  • 4 Willich SN, Linderer T, Wegscheider K, Leizorovicz A, Alamercery Y, Schroder R. and the ISAM study group. Increased morning incidence of myocardial infarction in the ISAM study: absence with prior α2-adrenergic blockade. Circulation 1989; 80: 853-8.
  • 5 Lubbecke F, Zschatzsch S, Mitrovic V, Husseini H, Schlepper M, Lasch HG, Schutterle G, Wizemann V. Catecholamines and thrombocyte alpha2-adrenoceptors in patients with acute myocardial infartion. Eur Heart J 1991; 12: 88-91.
  • 6 Folts JD, Rowe GG. Epinephrine potentiation of in vivo stimuli reverses aspirin inhibition of platelet thrombus formation in stenosed canine coronary arteries. Thromb Res 1988; 50: 507-16.
  • 7 Folts ID, Gallagher K, Rowe GG. Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregation?. Circulation 1982; 65: 248-55.
  • 8 Roux SP, Sakariassen KS, Turitto VT, Baumgartner HR. Effect of aspirin and epinephrine on experimentally induced thrombogenesis in dogs. A parallelism between in vivo and ex vivo thrombosis models. Arterioscler Thromb 1991; 11: 1182-91.
  • 9 Larsson PT, Hjelmdahl P, Olsson G, Egberg N, Hornstra G. Altered platelet function during mental stress and adrenaline infusion in humans: evidence for an increased aggregability in vivo as measured by filtragometry. Clin Sci 1989; 76: 369-76.
  • 10 Larsson PT, Hjelmdahl P, Olsson G, Angelin B, Hornstra G. Platelet aggregability in humans: contrasting in vivo and in vitro findings during sympathoadrenal activation and relationship to serum lipids. Eur J Clin Invest 1990; 20: 398-405.
  • 11 Badimon L, Badimon J, Galvez A, Chesebro JH, Fuster V. Influence of arterial damage and wall shear rate on platelet deposition: Ex vivo study in a swine model. Arteriosclerosis 1986; 6: 312-20.
  • 12 Badimon L, Badimon JJ. Mechanims of arterial thrombosis in nonparallel streamlines: platelet thrombi growth on the apex of stenotic severely injured vessel wall. J Clin Invest 1989; 84: 1134-44.
  • 13 Lassila R, Badimon JJ, Vallabhajosula S, Badimon L. Dynamic monitoring of platelet deposition on severely damaged vessel wall during blood flow. Effects of different stenoses on thrombus growth. Arteriosclerosis 1990; 10: 306-15.
  • 14 Ardlie NG, McGuiness JA, Garret JJ. Effect on human platelet of catecholamines at levels achieved in the circulation. Atherosclerosis 1985; 58: 251-9.
  • 15 Hjemdahl P, Chronos NAF, Wilson DJ, Bouloux P, Goodall AH. Epinephrine sensitizes human platelets in vivo and in vitro as studies by fibrinogen binding and P-selectin expression. Arterioscler Thromb 1994; 14: 77-84.
  • 16 Goto S, Ikeda Y, Murata M, Handa M, Takahashi E, Yoshioka A, Fujimura Y, Fukuyama M, Handa S, Ogawa S. Epinephrine augments von Willebrand factor-dependent shear-induced platelet aggregation. Circulation 1992; 86: 1859-63.
  • 17 Goto S, Handa S, Takahashi E, Abe S, Handa M, Ikeda Y. Synergistic effect of epinephrine and shearing on platelet activation. Thromb Res 1996; 84: 351-9.
  • 18 Mustonen P, Lassila R. Epinephrine augments platelet recruitment to immobilized collagen in flowing blood-evidence for a von Willebrand factor-mediated mechanism. Thromb Haemost 1996; 75: 175-81.
  • 19 Galvez A, Badimon L, Badimon JJ, Fuster V. Electrical aggregometry in whole blood from human, pig and rabbit. Thromb Haemost 1986; 56: 128-32.
  • 20 Royo T, Vidal M, Badimon L. Purification of the porcine platelet GP IIb/IIIa complex and the propolypeptide of von Willebrand factor. Thromb Haemost 1998; 2: 302-9.
  • 21 Badimon L, Badimon JJ, Lassila R, Heras M, Chesebro JH, Fuster V. Thrombin regulation of platelet interaction with damaged vessel wall and isolated collagen type I at arterial flow conditions in a porcine model: effects of hirudins, heparin and calcium chelation. Blood 1991; 78: 423-34.
  • 22 Goldstein DS, Feuerstein G, Izzo Jr JL, Kopin IJ, Kaiser II HR. Validity and reliability of liquid chromatography with electrochemical detection for plasma levels of norepinephrine and epinephrine in man. Life Sci 1981; 28: 467-75.
  • 23 Gewirtz H, Steiner M, Sasken H, Most AS. Measurement by electrical impedance of porcine platelet response to selected physiological agonists. Proc Soc Exp Biol Med 1985; 179: 324-30.
  • 24 Addonizio VP, Edmunds HL, Colman RW. The function of monkey (M. mulatta) platelets compared to platelets of pig, sheep, and man. J Lab Clin Med 1978; 91: 989-97.
  • 25 Søfteland E, Framstad T, Thorsen T, Holmsen H. Porcine platelets in vitro and in vivo studies. Eur J Haematol 1992; 49: 161-73.
  • 26 Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Garon MG, Lefkowitz RJ, Regan JW. Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science 1987; 238: 650-6.
  • 27 Lomasney JW, Lorenz W, Allen LF, King K, Regan JW, Yang-Feng Tl, Caron MG, Lefkowitz RJ. Expansion of the α2-adrenergic receptor family: cloning and characterization of a human α2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA 1990; 87: 5094-8.
  • 28 Berkowitz DE, Price DT, Bello EA, Page SO, Schwinn DA. Localization of messenger RNA for three distinct α2-adrenergic receptor subtypes in human tissues. Anesthesiology 1994; 81: 1235-44.
  • 29 Pepei P, Faber JE. Characterization of α-adrenoceptor gene expression in arterial and venous smooth muscle. Am J Physiol 1993; 265: H1501-9.
  • 30 Keraly CL, Kinlough-Rathborne R, Packham MA, Sizuki H, Mustard JF. Conditions affecting the responses of human platelets to epinephrine. Thromb Haemost 1988; 60: 209-16.
  • 31 Lanza F, Beretz A, Stierle A, Hanau D, Kubina M, Cazenave J-P. Epinephrine potentiates human platelet activation but is not an aggregating agent. Am J Physiol 1988; 255: H1276-88.
  • 32 Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303: 436-44.
  • 33 Wade CE, Hannon JP, Rossone CA, Hunt MM, Rodkey WG. Cardiovascular and hormonal responses of conscious pigs during physical restraint. In: Thumbleson ME. ed. Swine in Biomedical Research, vol 3 Plenum Publishing Co.; 1986: 1395-404.
  • 34 Fernández-Ortiz A, Badimon JJ, Falk E, Fuster V, Meyer B, Mailhac A, Weng D, Shah PK, Badimon L. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23: 1562-9.
  • 35 Hung J, Lam JY, Lacoste L, Letchacovski G. Cigarette smoking acutely increases platelet thrombus formation in patiens with coronary artery disease taking aspirin. Circulation 1995; 92: 2432-6.
  • 36 Ikeda Y, Handa M, Kawano K, Kamata T, Murata M, Araki Y, Anbo H, Kawai Y, Watanabe K, Itagaki Y, Sakai K, Ruggeri ZM. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest 1991; 87: 1234-40.
  • 37 Peterson DM, Stathopoulos NA, Giorgio TD, Hellums JD, Moake JL. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoprotein Ib and IIb/IIIa. Blood 1987; 69: 625-8.
  • 38 Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distincy mechanisms of platele aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101: 479-86.
  • 39 Kjelsen SE, Weder AB, Egan B, Neubig R, Zweifler AJ, Julius S. Effect of circulatory epinephrine on platelet function and hematocrit. Hypertension 1995; 25: 1096-105.
  • 40 Siess W. Molecular mechanisms of platelet activation. Physiol Rev 1989; 69: 58-178.
  • 41 Kerry R, Scrutton MC, Wallis RB. Mammalian platelet adrenoceptors. Br J Pharmacol 1984; 81: 91-102.
  • 42 Hjelmdahl P, Larsson PT, Wallen NH. Effects of stress and β-blockage on platelet function. Circulation 1991; 84: VI44-61.