Thromb Haemost 2000; 83(02): 290-296
DOI: 10.1055/s-0037-1613801
Rapid Communication
Schattauer GmbH

Cellular Degradation of Free and Inhibitor-bound Tissue-type Plasminogen Activator

Requirement for a Co-receptor?
Chantal Camani
1   From the Division of Angiology and Hemostasis, University Hospital Geneva, Switzerland
,
Olivier Gavin
1   From the Division of Angiology and Hemostasis, University Hospital Geneva, Switzerland
,
Egbert K. O. Kruithof
1   From the Division of Angiology and Hemostasis, University Hospital Geneva, Switzerland
› Author Affiliations
Further Information

Publication History

Received 15 March 1999

Accepted after resubmission 06 October 1999

Publication Date:
11 December 2017 (online)

Summary

The low density lipoprotein receptor-related protein (LRP) is a multiligand clearance receptor that removes free tissue-type plasminogen activator (t-PA) or complexes of t-PA with plasminogen activator inhibitor type 1 (PAI-1) from the blood circulation or the pericellular space. Co-receptors are essential for LRP-mediated clearance of several ligands (e.g. glycosaminoglycans for thrombin/protease nexin and lipoprotein lipase, and the urokinase receptor for urokinase/PAI-1 complexes). The present study was undertaken to investigate whether LRP-mediated t-PA clearance requires a co-receptor as well.

In five cell lines from different organs and species degradation of t-PA and t-PA/PAI-1 was mediated by LRP (or LRP-like receptors). No degradation of t-PA and t-PA/PAI-1 occurred in THP-1 or U-937 human monocyte-like cells, despite the presence of functional LRP. As glycosaminoglycans can bind t-PA and PAI-1 we investigated whether they are involved in t-PA/PAI-1 degradation. Pre-treatment of COS cells or HT1080 cells with chlorate, an inhibitor of glycosaminoglycan sulfation, did not decrease t-PA/PAI-1 degradation. Furthermore, CHO cells genetically deficient in glycosaminoglycans efficiently degraded t-PA/PAI-1. Thus it is unlikely that glycosaminoglycans are co-receptors for degradation of t-PA or t-PA/PAI-1.

This study indicates that THP-1 and U-937 cells lack a critical component (co-receptor?) for the LRP-mediated degradation of t-PA.

Abbreviations: LRP, low density lipoprotein receptor-related protein; PAI-1, plasminogen activator inhibitor type 1; RAP, receptor-associated protein; t-PA, tissue-type plasminogen activator; u-PA, urokinase; u-PAR, urokinase receptor.

 
  • References

  • 1 Otter M, Barrett-Bergshoeff MM, Rijken DC. Binding of tissue-type plasminogen activator by the mannose receptor. J Biol Chem 1991; 266: 13931-5.
  • 2 Narita M, Bu G, Herz J, Schwartz AL. Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo. J Clin Invest 1995; 96: 1164-8.
  • 3 Biessen EA, Van Teijlingen M, Vietsch H, Barrett-Bergshoeff MM, Bijsterbosch MK, Rijken DC, Van Berkel TJ, Kuiper J. Antagonists of the mannose receptor and the LDL receptor-related protein dramatically delay the clearance of tissue plasminogen activator. Circulation 1997; 95: 46-52.
  • 4 Wing LR, Hawksworth GM, Bennett B, Booth NA. Clearance of t-PA, PAI-1, and t-PA-PAI-1 complex in an isolated perfused rat liver system. J Lab Clin Med 1991; 117: 109-14.
  • 5 Camani C, Bachmann F, Kruithof EKO. The role of plasminogen activator inhibitor type 1 in the clearance of tissue-type plasminogen activator by rat hepatoma cells. J Biol Chem 1994; 269: 5770-5.
  • 6 Horn IR, Van den Berg BMM, Van der Meijden PZ, Pannekoek H, Van Zonneveld AJ. Molecular analysis of ligand binding to the second cluster of complement-type repeats of the low density lipoprotein receptor-related protein. J Biol Chem 1997; 272: 13608-13.
  • 7 Moestrup SK, Holtet TL, Etzerodt M, Thøgersen HC, Nykjaer A, Andreasen PA, Rasmussen HH, Sottrup-Jensen L, Gliemann J. α2-macroglobulinproteinase complexes, plasminogen activator inhibitor type-1-plasminogen activator complexes, and receptor-associated protein bind to a region of the α2-macroglobulin receptor containing a cluster of eight complement-type repeats. J Biol Chem 1993; 268: 13691-6.
  • 8 Willnow TE, Orth K, Herz J. Molecular dissection of ligand binding sites on the low density lipoprotein receptor-related protein. J Biol Chem 1994; 269: 15827-32.
  • 9 Bu G, Williams S, Strickland DK, Schwartz AL. Low density lipoprotein receptor-related protein/α2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci USA 1992; 89: 7427-31.
  • 10 Orth K, Madison EL, Gething MJ, Sambrook JF, Herz J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/α2-macroglobulin receptor. Proc Natl Acad Sci USA 1992; 89: 7422-6.
  • 11 Andreasen PA, Sottrup-Jensen L, Kjøller L, Nykjaer A, Moestrup SK, Petersen CM, Gliemann J. Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes. FEBS Lett 1994; 338: 239-45.
  • 12 Moestrup SK. The α2-macroglobulin receptor and epithelial glycoprotein- 330: two giant receptors mediating endocytosis of multiple ligands. Biochim Biophys Acta 1994; 1197: 197-213.
  • 13 Kasza A, Petersen HH, Heegaard CW, Oka K, Christensen A, Dubin A, Chan L, Andreasen PA. Specificity of serine proteinase/serpin complex binding to very-low-density lipoprotein receptor and α2-macroglobulin receptor/low-density-lipoprotein-receptor-related protein. Eur J Biochem 1997; 248: 270-81.
  • 14 Kounnas MZ, Henkin J, Argraves WS, Strickland DK. Low density lipoprotein receptor-related protein/α2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J Biol Chem 1993; 268: 21862-7.
  • 15 Stefansson S, Kounnas MZ, Henkin J, Mallampalli RK, Chappell DA, Strickland DK, Argraves WS. gp330 on type II pneumocytes mediates endocytosis leading to degradation of pro-urokinase, plasminogen activator inhibitor-1 and urokinase-plasminogen activator inhibitor-1 complex. J Cell Sci 1995; 108: 2361-8.
  • 16 Nykjaer A, Kjøller L, Cohen RL, Lawrence DA, Garni-Wagner BA, Todd III RF, van Zonneveld AJ, Gliemann J, Andreasen PA. Regions involved in binding of urokinase-type-1 inhibitor complex and pro-urokinase to the endocytic α2-macroglobulin receptor/low density lipoprotein receptor-related protein. J Biol Chem 1994; 269: 25668-76.
  • 17 Kounnas MZ, Chappell DA, Wong H, Argraves WS, Strickland DK. The cellular internalization and degradation of hepatic lipase is mediated by low density lipoprotein receptor-related protein and requires cell surface proteoglycans. J Biol Chem 1995; 270: 9307-12.
  • 18 Knauer MF, Kridel SJ, Hawley SB, Knauer DJ. The efficient catabolism of thrombin-protease nexin 1 complexes is a synergistic mechanism that requires both the LDL receptor-related protein and cell surface heparins. J Biol Chem 1997; 272: 29039-45.
  • 19 Herz J, Goldstein JL, Strickland DK, Ho YK, Brown MS. 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/α2-macroglobulin receptor. J Biol Chem 1991; 266: 21232-8.
  • 20 Fraker PJ, Speck Jr JC. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 1978; 80: 849-57.
  • 21 Esko JD, Stewart TE, Taylor WH. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 1985; 82: 3197-201.
  • 22 Moestrup SK, Gliemann J. Analysis of ligand recognition by the purified α2-macroglobulin receptor (low density lipoprotein receptor-related protein). J Biol Chem 1991; 266: 14011-7.
  • 23 Montgomery RI, Lidholt K, Flay NW, Liang J, Vertel B, Lindahl U, Esko JD. Stable heparin-producing cell lines derived from the Furth murine mastocytoma. Proc Natl Acad Sci USA 1992; 89: 11327-31.
  • 24 Camani C, Gavin O, Bertossa C, Samatani E, Kruithof EKO. Studies on the effect of fucosylated and non-fucosylated finger/growth factor constructs on the clearance of tissue-type plasminogen activator mediated by the lowdensity-lipoprotein-receptor-related protein. Eur J Biochem 1998; 251: 804-11.
  • 25 Conese M, Nykjaer A, Petersen CM, Cremona O, Pardi R, Andreasen PA, Gliemann J, Christensen EI, Blasi F. α2-macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J Cell Biol 1995; 131: 1609-22.
  • 26 Lysiak JJ, Hussaini IM, Gonias SL. α2-macroglobulin synthesis by the human monocytic cell line THP-1 is differentiation state-dependent. J Cell Biochem 1997; 67: 492-7.
  • 27 Nykjaer A, Conese M, Christensen EI, Olson D, Cremona O, Gliemann J, Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J 1997; 16: 2610-20.
  • 28 Nykjaer A, Christensen EI, Vorum H, Hager H, Petersen CM, Røigaard H, Min HY, Vilhardt F, Møller LB, Kornfeld S, Gliemann J. Mannose 6-phosphate/insulin-like growth factor-II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J Cell Biol 1998; 141: 815-28.
  • 29 Fischer B. Binding of one-chain tissue-type plasminogen activator to fibrin, partially plasmin-degraded fibrin, lysine and heparin. Biomed Biochim Acta 1991; 50: 47-54.
  • 30 Böhm T, Geiger M, Binder BR. Isolation and characterization of tissue-type plasminogen activator-binding proteoglycans from human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 1996; 16: 665-72.