Thromb Haemost 2002; 88(02): 253-258
DOI: 10.1055/s-0037-1613195
In Focus
Schattauer GmbH

Inhibition of Thrombin Generation in Plasma by Fibrin Formation (Antithrombin I)

N. B. de Bosch
1   Centro Nacional de Hemofilia Banco Municipal de Sangre, Caracas, Caracas, Venezuela
,
M. W. Mosesson
2   The Blood Research Institute of the Blood Center of Southeastern Wisconsin, Milwaukee, USA
,
A. Ruiz-Sáez
1   Centro Nacional de Hemofilia Banco Municipal de Sangre, Caracas, Caracas, Venezuela
,
M. Echenagucia
1   Centro Nacional de Hemofilia Banco Municipal de Sangre, Caracas, Caracas, Venezuela
,
A. Rodriguez-Lemoin
1   Centro Nacional de Hemofilia Banco Municipal de Sangre, Caracas, Caracas, Venezuela
› Author Affiliations
Further Information

Publication History

Received 29 January 2002

Accepted after revision 11 April 2002

Publication Date:
07 December 2017 (online)

Summary

The adsorption of thrombin to fibrin during clotting defines “Antithrombin I” activity. We confirmed that thrombin generation in afibrinogenemic or in Reptilase defibrinated normal plasma was higher than in normal plasma. Repletion of these fibrinogen-deficient plasmas with fibrinogen 1 (‘γA/’γA), whose fibrin has two “low affinity” non-substrate thrombin binding sites, resulted in moderately reduced thrombin generation by 29-37%. Repletion with fibrinogen 2 (‘γ´/’γA), which in addition to low affinity thrombin-binding sites in fibrin, has a “high affinity” non-substrate thrombin binding site in the carboxy-terminal region of its ‘γ´ chain, was even more effective and reduced thrombin generation by 57-67%. Adding peptides that compete for thrombin binding to fibrin [S-Hir53-64 (hirugen) or ‘γ´ 414-427] caused a transient delay in the onset of otherwise robust thrombin generation, indicating that fibrin formation is necessary for full expression of Antithrombin I activity. Considered together, 1) the increased thrombin generation in afibrinogenemic or fibrinogen-depleted normal plasma that is mitigated by fibrinogen replacement; 2) evidence that prothrombin activation is increased in afibrinogenemia and normalized by fibrinogen replacement; 3) the severe thrombophilia that is associated with defective thrombin-binding in dysfibrinogenemias Naples I and New York I, and 4) the association of afibrinogenemia or hypofibrinogenemia with venous or arterial thromboembolism, indicate that Antithrombin I (fibrin) modulates thromboembolic potential by inhibiting thrombin generation in blood.

Presented in part at the XVII Congress of the ISTH, Washington, D. C. (1)

 
  • References

  • 1 de Bosch NB, Mosesson MW, Ruiz-Sáez A, Echenagucia M, Rodriguez-Lemoin A. Effects of ‘γ’/’γA chain fibrin on the plasma thrombin generation in afibrinogenemia. Thromb Haemost 1999; 82 (Suppl): 320a.
  • 2 Mosesson MW. Fibrinogen and fibrin polymerization: an appraisal of the binding events that accompany fibrin generation and fibrin clot assembly. Blood Coagul Fibrinolysis 1997; 08: 257-67.
  • 3 Meh DA, Siebenlist KR, Mosesson MW. Identification and characterization of the thrombin binding sites on fibrin. J Biol Chem 1996; 271: 23121-5.
  • 4 Wolfenstein-Todel C, Mosesson MW. Carboxy-terminal amino acid sequence of a human fibrinogen ‘γ chain variant (‘γ’). Biochemistry 1981; 20: 6146-9.
  • 5 Mosesson MW, Finlayson JS. Subfractions of human fibrinogen: preparation and analysis. J Lab Clin Med 1963; 62: 663-74.
  • 6 Mosesson MW, Finlayson JS, Umfleet RA. Human fibrinogen heterogeneities. III. Identification of ‘γ chain variants. J Biol Chem 1972; 247: 5223-7.
  • 7 Wolfenstein-Todel C, Mosesson MW. Human plasma fibrinogen heterogeneity: evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (‘γ’). Proc Natl Acad Sci USA 1980; 77: 5069-73.
  • 8 Dupuy E, Soria C, Molho P, Zini J-M, Rosenstingl S, Laurian C, Bruneval P, Tobelem G. Embolized ischemic lesions of toes in an afibrinogenemic patient: possible relevance to in vivo circulating thrombin. Thromb Res 2001; 102: 211-9.
  • 9 Caen J, Faur Y, Inceman S, Chassigneux J, Seligmann M, Anagnostopoulos T, Bernard J. Nécrose ischémique bilatérale dans un cas de grande hypofibrinogénémie congénitale. Nouv Rev Fr Hématol 1964; 04: 321-6.
  • 10 Marchal G, Duhamel G, Samama M, Flandrin G. Thrombose massive des vaisseaux d’un membre au cours d’une hypofibrinémie congénitale. Hémostase 1964; 04: 81-9.
  • 11 Nilsson IM, Niléhn J-E, Cronberg S, Nordén G. Hypofibrinogenemia and massive thrombosis. Acta Med Scand 1966; 180: 65-76.
  • 12 Ingram GI, McBrien DJ, Spencer H. Fatal pulmonary embolism in congenital fibrinopenia. Acta Haematol 1966; 35: 56-62.
  • 13 Mackinnon HH, Fekete JF. Congenital afibrinogenemia: vascular changes and multiple thrombosis induced by fibrinogen infusions and contraceptive medication. Can Med Assoc J 1971; 140: 597-9.
  • 14 Cronin C, Fitzpatrick D, Temperly I. Multiple pulmonary emboli in a patient with afibrinogenaemia. Acta Haematol 1988; 07: 53-4.
  • 15 Drai E, Taillan B, Schneider S, Ferrari E, Bayle J, Dujardin P. Thrombose portale révélatrice d’une afibrinogénémie congénitale. La Presse Médicale 1992; 21: 1820-1.
  • 16 Chafa O, Chellali T, Sternberg C, Reghis A, Hamladji RM, Fischer AM. Severe hypofibrinogenemia associated with bilateral ischemic necrosis of toes and fingers. Blood Coagul Fibrinolysis 1995; 06: 549-52.
  • 17 Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 385-92.
  • 18 Kumar R, Béguin S, Hemker C. The influence of fibrinogen and fibrin on thrombin generation-evidence for feedback activation of the clotting system by clot bound thrombin. Thromb Haemost 1994; 72: 713-21.
  • 19 de Bosch NB, Sáez A, Soria C, Soria J, Echenagucia M. Coagulation profile in afibrinogenemia. Thromb Haemost 1997; Suppl: 625a.
  • 20 Siebenlist KR, Meh DA, Mosesson MW. Plasma factor XIII binds specifically to fibrinogen molecules containing ‘γ’ chains. Biochemistry 1996; 35: 10448-53.
  • 21 Pandya BV, Gabriel JL, O’Brien J, Budzynski AZ. Polymerization site in the β chain of fibrin: Mapping of the Bβ1-55 sequence. Biochemistry 1991; 30: 162-8.
  • 22 Meh DA, Siebenlist KR, Brennan SO, Holyst T, Mosesson MW. The amino acid sequences in fibrin responsible for high affinity thrombin binding. Thromb Haemost 2001; 85: 470-4.
  • 23 Pandya BV, Cierniewski CS, Budzynski AZ. Conservation of human fibrinogen conformation after cleavage of the Bβ chain NH2-terminus. J Biol Chem 1985; 260: 2994-3000.
  • 24 Siebenlist KR, DiOrio JP, Budzynski AZ, Mosesson MW. The polymerization and thrombin-binding properties of des-(Bβ 1-42)fibrin. J Biol Chem 1990; 265: 18650-5.
  • 25 Meh DA, Mosesson MW, Siebenlist KR, Simpson-Haidaris PJ, Brennan SO, DiOrio JP, Thompson K, Di Minno G. Fibrinogen Naples I (Bβ A68T) non-substrate thrombin binding capacities. Thromb Res 2001; 103: 63-73.
  • 26 Farrell DH, Lovely RS, Moaddel M, Stafford AR, Weitz JI. Fibrinogen ‘γ’ chain binds thrombin exosite II. Blood 2000; 96: 448a-449a.
  • 27 Stubbs MT, Bode W. A player of many parts: The spotlight falls on thrombin’s structure. Thromb Res 1993; 69: 1-58.
  • 28 Fenton II JW, Olson TA, Zabinski MP, Wilner GD. Anion-binding exosite of human α-thrombin and fibrin(ogen) recognition. Biochemistry 1988; 27: 7106-12.
  • 29 Seegers WH, Nieft M, Loomis EC. Note on the adsorption of thrombin on fibrin. Science 1945; 101: 520-1.
  • 30 Seegers WH. Multiple protein interactions as exhibited by the blood-clotting mechanism. J Phys Colloid Chem 1947; 51: 198-206.
  • 31 Quick AJ, Favre-Gilly JE. Fibrin, a factor influencing the consumption of prothrombin in coagulation. Am J Physiol 1949; 158: 387-95.
  • 32 Alexander B, Goldstein R, Rich L, Le Bolloc’h AG, Diamond LK, Borges W. Congenital afibrinogenemia. A study of some basic aspects of coagulation. Blood 1954; 09: 843-65.
  • 33 Korte W, Feldges A. Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible by fibrinogen substitution. Clin Invest 1994; 72: 396-8.
  • 34 Liu CY, Nossel HY, Kaplan KL. The binding of thrombin by fibrin. J Biol Chem 1979; 254: 10421-5.
  • 35 Nossel HL, Ti M, Kaplan KL, Spanondis K, Soland T, Butler Jr VP. The generation of fibrinopeptide A in clinical blood samples. Evidence for thrombin activity. J Clin Invest 1976; 58: 1136-44.
  • 36 Francis CW, Markham RE, Barlow GH, Florack TM, Dobrzynski DM, Marder VJ. Thrombin activity of fibrin thrombi and soluble plasmic derivatives. J Lab Clin Med 1983; 102: 220-30.
  • 37 Owen J, Friedman KD, Grossman BA, Wilkins C, Berke AD, Powers ER. Thrombolytic therapy with tissue plasminogen activator or streptokinase induces transient thrombin activity. Blood 1988; 72: 616-20.
  • 38 Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990; 86: 385-91.
  • 39 Mutch NJ, Robbie LA, Booth NA. Human thrombi contain an abundance of active thrombin. Thromb Haemost 2001; 86: 1028-34.
  • 40 Liu CY, Nossel HL, Kaplan KL. Defective thrombin binding by abnormal fibrin associated with recurrent thrombosis. Thromb Haemost 1979; 42: 79.
  • 41 Koopman J, Haverkate F, Lord ST, Grimbergen J, Mannucci PM. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. J Clin Invest 1992; 90: 238-44.