Synthesis of Human Interleukin-8 by Native Chemical Ligation

Significance: The realization that unprotected peptide thioesters react chemoselectively with unprotected N-terminal cysteine residues to form amide linkages is an important advancement in protein synthesis. Native Chemical Ligation (NCL) allows synthetic access to proteins of moderate size.

Comment: NCL proceeds by the formation of an intermediate thioester linkage with cysteine that then spontaneously rearranges to the native amide bond. This strategy was applied to the total chemical synthesis of human interleukin 8 (IL-8), a 72-amino acid protein containing four cysteine residues.

Synthesis of Human Interleukin 8 (IL-8) via NCL:

\[
\text{IL-8 (1-33)} + \text{IL-8 (35-72)} \rightarrow \text{IL-8}
\]

- C-terminal thioester linkage
- Intermediate thioester linkage
- Final ligated product with native amide bond

Principle of native chemical ligation (NCL):

Unprotected peptide segments

- N-terminal cysteine
- Chemoselective thioesterification
- Intermediate thioester linkage
- Spontaneous amide bond formation
- Final ligated product

Synfacts Classic

Category: Chemistry in Medicine and Biology

Key words: peptide synthesis, native chemical ligation, protein synthesis, human interleukin 8

SYNFACTS Contributors: Dirk Trauner, Julius R. Reyes

Published online: 19.03.2019

DOI: 10.1055/s-0037-1612404; **Reg-No.:** T01919SF

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.