A Chemoselective Conjugation of Peptides with Electron-Rich (Hetero)Arenes

Significance: The site-selective functionalization of peptides with small molecules is a formidable challenge in organic synthesis. Cohen, Pentelute, and co-workers have described a new high-yielding conjugation reaction between electron-rich aromatics and 2-thiol-5-nitropyridine (TNP)-protected selenocysteine. This methodology is an important advance in the production of homogeneously functionalized proteins such as antibody–drug conjugates.

Comment: A range of unprotected pharmaceutical agents and natural products are competent substrates, as demonstrated by the syntheses of vancomycin–peptide conjugates and a homogeneous genistein–trastuzumab conjugate, generated by a two-step selenocysteine ligation–sortagging sequence. In general, electron-rich arenes with acidic N–H or O–H bonds are the most efficient substrates. \(\text{CuSO}_4 \) and a bipy ligand can be used to promote the reaction with less reactive arenes.